Artificial
Intelligence

Artificial Intelligence 76 (1995) 319-375

A general programming language for unified
planning and control

Richard Levinson *
Recom Technologies Inc.. NASA Ames Research Center. Mail Stop: 269-2, Mofferr Field, CA 94035, USA

Received June 1993; revised March 1994

Abstract

This paper presents a method for embedding predictive search techniques within a general-
purpose programming language. We focus on using this language to program the behavior of a
real-time control system. Our goal is the ability to write complex programs that can be interpreted
by both a real-time controller and an associated planner. The language provides an expressive
action representation which captures the procedural complexities of practical control programs,
yet can still be projected by a search-based planner. To support integration with the real-time
controller, the planner can provide useful advice when it is interrupted after an arbitrary amount
of computation. The system provides a unified approach since the planner and the controller share
identical data structures and algorithms for interpreting a shared action representation. This unified
representation facilitates very tight integration between the planner and the controller.

1. Introduction

Developments in the field of real-time control have had an enormous impact on
modern society. Process control software has revolutionized such critical industries as
medical and scientific instrumentation, automobile production, and air traffic control.
However, there are limits to the capabilities of modern control software. Programming
can be viewed as the art of specifying all control details in advance. This requirement
to encode all behavior in advance inhibits automation in applications where the environ-
mental conditions and the effects of control actions cannot be fully predicted at design
time. In this paper, we consider how Al planning techniques can improve the ability of
real-time control software to operate in unexpected situations.

* E-mail: levinson @ ptolemy.arc.nasa.gov.

0004-3702/95/$09.50 (© 1995 Elsevier Science B.V. All rights reserved
SSDI0004-3702(94)00075-1

320 R. Levinson/Artificial Intelligence 76 (1995) 319-375

In order to operate under novel conditions, control systems may use both feedback
and feedforward techniques. Feedback and feedforward are complementary methods of
using sensory input to select an appropriate control action. Feedback is typically used
to select actions based on observations of errors that have already occurred, and it relies
on an ability to monitor the controlled process. Feedforward is used to select actions
based on predictions of errors that could happen in the future, and it relies on an ability
to predict the behavior of the controlled process [10]. Dean and Wellman have noted
that planning is a form of feedforward control [10]. Planning serves as a feedforward
method for extending a controller’s operating range by generating novel control behavior
to handle non-routine situations.

1.1. Background definitions

We begin by defining some background terminology, starting with the central concept
of search. Search is the process of selecting a subset of elements with desirable properties
from a superset of choices. Selected elements are evaluated and replaced if they do not
have the desired properties. In our system, planning means using predictive (look-
ahead) search to select effector commands. Thus, planning involves using prediction to
select a set of effector commands that achieve a given goal. Real-time control means
reading sensors and executing effector commands in bounded time (without search).
The fundamental difficulty for embedding planning within real-time control software is
the fact that the planner’s search process cannot guarantee a solution within the bounded
time required for real-time control.

The planner often must meet real-time deadlines that vary with the given problem.
This class of planning has been called time-dependent planning by Dean and Boddy
[9]1. They identified a class of algorithms called anytime algorithms that are useful for
meeting the demands of time-dependent planning [9]. They define anytime algorithms
as procedures that are interruptable and ready to provide increasingly useful results
at any time [2,9]. Further, they identified heuristic search methods as being likely
candidates for use as anytime algorithms {2,9]. Our system combines heuristic search
methods with anytime interruptability for algorithms written in a general programming
language.

Finally, we define the term choice point to mean a step in a program where a single
choice must be selected from a set of alternatives before the program can continue. Each
of these terms will be discussed in depth throughout the rest of the paper. For now, these
preliminary definitions will suffice.

1.2. Research goals
Our primary goal is to test the following:

Top-Level Hypothesis. Planning techniques can extend the operating range of a real-
time controller.

R. Levinson/Artificial Intelligence 76 (1995) 319-375 321

The class of planning techniques required to test this hypothesis involves situated,
predictive search for real-time, closed-loop control. In other words, we expect our
planner to operate while connected to sensors and effectors, with no human interaction.
Since the planner must operate in real-time, it must be interruptable and ready to
provide useful results at any time. We are particularly interested in autonomous control,
where human intervention is not possible and the system must rely on its own sensors.
Our efforts are driven by a NASA application concerned with developing autonomous
scientific instruments that can operate without human assistance in remote or hostile
environments [28].

Extending a controller’s operating range is an important obstacle in the path toward
achieving autonomous controllers. As controllers get more complex and less reliant on
humans, a given controller may be situated in a wider variety of environments. An
autonomous controller will eventually face unexpected situations, and therefore requires
the capacity to operate under conditions for which it was not entirely pre-programmed.
Due to lack of information and finite effort at design time, a control program may
not have been written to account for every possible situation. Currently, controllers are
written as deterministic programs. The programmer selects certain situations to handle,
and supplies error messages for deviant cases. If deviant situations are not predicted by
the programmer and trapped with an error message, the behavior of the controller may
simply be undefined and potentially dangerous. A good measure of a system’s autonomy
is its ability to operate in unusual situations for which it wasn’t explicitly programmed.
Such behavior is analogous to a student who has been taught exactly how to execute
a “textbook” procedure under routine conditions, but must plan how to modify the
procedure to handle real-world complexities.

1.3. Limitations of current approaches

In this section we discuss the limitations of current approaches which make it difficult
to achieve the above goals. To test our top-level hypothesis, we need a system that
integrates predictive search with real-time control programs. Although some initial efforts
have begun [13,25,32], few such systems exist today. In considering why this is so, we
observe two problems due to a language barrier between the planner and the controller.

Observation 1. Most control programs are written in a general programming language.

Most control system designers know how to program, but they do not know how to
use Al planning systems. This is because the designers require the procedural expres-
siveness of a general language. We would like to provide the vast numbers of control
system engineers with access to planning techniques—in their own environment. Our
goal is to provide a language that allows controller designers to incorporate planning
techniques into their control programs relatively seamlessly. They must be able to use
standard programming techniques such as hierarchical procedure decomposition, vari-
able assignment, iteration and conditional control. Even when the programmers do know

how to use planning techniques, they might not be able to use them because of the next
observation.

322 R. Levinson/Artificial Intelligence 76 (1995) 319-375

Observation 2. Planning systems usually do not scale up to real-world control applica-
tions.

The class of applications we have in mind involves real-time closed-loop control. One
important reason that planning systems don’t scale up to these sorts of applications is
that they don’t use a general-purpose programming language. Planning systems typically
require that control behavior be encoded in an unconventional, procedurally inexpressive
representation. The representations are unconventional because they do not use stan-
dard programming constructs and they require specialized training and knowledge about
Al planning methodology. Planning systems typically use a representation that cannot
capture the procedural expressiveness required for real hardware control such as hierar-
chical and modular procedures or complex iterative and conditional control. However,
hierarchical procedure decomposition is essential for encoding practical control behavior
because it works like subgoaling, which is a method that is widely recognized to reduce
search [23]. Planning systems that do support hierarchical decomposition typically do
not provide results until they generate a complete plan. This decreases their value in
deadline constrained situations [9].

One problem that has impeded the development of procedurally expressive plan-
ning techniques is the difficulty of analyzing conditional operators and effects [38].
Yet another problem is that the planner typically uses an action representation that is
different from that used by an associated controller (which is usually written in a gen-
eral programming language). This forces the designer to encode and maintain different
control procedures for planning and execution. It also makes it difficult to transition
smoothly back and forth between planning and execution because the data structures
and processing algorithms speak different languages [19]. Another large obstacle to
the incorporation of planning systems into real-world, real-time control applications is
the need to respond quickly to a changing environment [10,17,21]. Most systems that
generate and then execute plans operate with the assumption that the external world
doesn’t change in unexpected ways. All of these factors impede the transfer of planning
systems to real-world control applications.

1.4. Overview of our approach

We have developed the PROcedure Planning and Execution Language (PROPEL)
to address these problems so that we can more accurately evaluate how planning can
help real-time control systems. An alternative expansion for the name PROPEL is: the
PROgrammer's Planning and Execution Language. This alternative emphasizes our goal
to provide planning techniques in a form that is familiar and thus accessible to the
general programming community.

We describe a predictive search technique that can be embedded within a dialect of
LISP using a software abstraction called the choice point. The controller relies on pre-
programmed choices for routine situations, but uses predictive search to evaluate choices
and generate novel behavior in unusual situations. We use the term pre-programmed to
mean the degree to which choices are eliminated at design time. The primary reasons for
not pre-programming all control behavior are finite programmer effort and programmer

R. Levinson/Artificial Intelligence 76 (1995) 319-375 323

Start/Stop

Planner

Control Procedures
with choice pts
and heuristics

ST
Procedure
Library

i Controller
Start/Stop /l

Fig. 1. Functional overview of PROPEL..

uncertainty about action outcomes and a changing environment.

To encode control programs, PROPEL uses a general programming language that is
shared by an interruptable planner and an associated real-time controller. The control
programs are written in a dialect of LISP that provides nondeterministic constructs, called
choice points, for subroutine calls and assignment statements. Additionally, the designer
can specify a set of default heuristics that will be used by the controller to instantiate
the control programs in bounded time without using search.

Fig. | shows a sketch of the functional relationships between the three primary
components in PROPEL: the procedure library, the interruptable planner and the real-
time controller. The procedures in the library can be interpreted by both the planner and
the controller, both of which have access to the sensor readings. The effectors on the
other hand., are only accessible to the controller. The planner performs look-ahead search
on the procedures and advises the controller about which selections to make at choice
points. The planner and the controller can each be started and stopped asynchronously
by an application-specific executive.

At design rime. a programmer designs a set of effector control procedures that contain
choice points. At run time, the planner uses predictive search to simulate and evaluate
alternative procedure instantiations. When a successful procedure is instantiated or the
planner is interrupted, the planner’s choices are collected into rules that advise the
controller while it executes the procedure. The controller can also execute the procedures
without the advice of the planner through the use of heuristics that guide a default
reactive instantiation.

1.5. Benefits of this approach

Our approach allows programmers to use predictive search to provide “exception
handling” for the controller. In unexpected environmental conditions, the planner’s advice
can enable the controller’s behavior to degrade gracefully, instead of producing a ‘“hard
failure” in the form of an error message. When the state of the controlled process gets
outside the normal operating range of the controller, the planner can construct an “in-
situ” handler by searching through a space of procedure instances for an appropriate
combination of effector commands.

324 R. Levinson/ Artificial Intelligence 76 (1995) 319-375

Embedding choice points within a general programming language allows us to explore
the role of search alongside deterministic, pre-programmed control. This is important
because the tradeoffs between pre-programming and predictive search are not well un-
derstood. When predictive search and general programming techniques co-exist in a
single language we are forced to address the question of which decisions can be pre-
programmed “off-line”, and which ones need to be determined using search at run time.
This dichotomy is at the root of much of the recent debate between reactive and pre-
dictive systems. All control systems take a position on this issue by pre-programming
some parts of their application, but the tradeoff is rarely discussed within the context
of a single action representation. PROPEL facilitates analysis of this tradeoff between
pre-programming and search by allowing programmers to experiment with both op-
tions.

Since a unified action representation for planning and control is rare, many systems
represent behavior as either entirely reactive (pre-programmed) or entirely predictive
(search-based). Reactive systems like PRS [17], GAPPS [21] and Brooks’ subsump-
tion architecture [5] rely exclusively on pre-programming, while predictive systems
like O-plan [8], SIPE [38] and SNLP [30] rely almost exclusively on search. We
choose a middle position on this continuum. We recognize that all decisions that can
be pre-programmed, should be. But we also recognize that controllers can be used in
situations outside of their normal operating conditions. In other words, we do not need
to build plans from scratch, but we also cannot pre-program all of the controller’s be-
havior. Other systems that occupy this middle ground typically partition behavior into
two distinct classes, called planning actions and control actions, that use different ac-
tion representations [10,19,38]. In contrast, we use an action representation that is
shared by both the planner and the controller. This facilitates a much tighter integra-
tion of planning and control than is possible when the two components use different
languages.

Many significant questions arise regarding the use of predictive search within a general
programming language. Although PROPEL certainly does not provide all of the answers,
it is intended as tool for exploring and studying the issues. We hope that embedding
predictive search within general programs will enable much more widespread use of
planning techniques by control system programmers. Until we understand how planning
techniques can exist alongside pre-programmed control, the Al planning techniques will
remain isolated. Isolated techniques will not be widely used and thus will never be fully
tested or evaluated.

1.6. The structure of this paper

The structure of this paper is as follows: Section 2 introduces the core software
abstraction concept of our system, called the choice point. With that as a base, we
introduce an example application in Section 3 that will be used throughout the paper.
Section 4 comprises the technical core of the paper, using the running example to
illustrate a detailed description of how the system works. Section 5 presents the results
of two experiments that illustrate PROPEL’s behavior and demonstrate how planning can
extend the controller’s operating range. Section 6 summarizes pointers to related work,

R. Levinson/Artificial Intelligence 76 (1995) 319-375 325

and Section 7 provides a qualitative evaluation of our system in terms of its assumptions,
limitations, contributions, and future work.

2. Introduction to the choice point abstraction

The key concept behind this entire system is a software abstraction, called the choice
point, that defines a search space within the context of a deterministic procedure. The
purpose of this section is to illustrate how the choice point software abstraction defines
a search space, and how this affects the semantics of an otherwise normal program. In
this section, we will introduce the core effect of the choice point abstraction without
addressing issues of hierarchical procedures, sensing and acting, and closed-loop control.
Those issues, and a detailed technical description of how the choice point abstraction
works, are discussed in Section 4.

We begin by extending a general programming language to include choice points in
the form of nondeterministic assignment statements. These choice points, called choose-
value statements, take the general form of:

({variable) — (choose-value (choices)
:heuristic (preference-function))).

Intuitively, this statement says that the variable on the left of the arrow will be
assigned a single value that is heuristically selected from the set of given choices.
However, the choices that were not selected represent alternative instantiations of the
assignment statement. Thus each choice point defines a disjunctive set of alternative
assignment values. A program that contains choice points therefore defines a set of
disjunctive procedure instances, where each instance results from a unique set of choice
point selections.

We have developed a search engine that interprets these procedures. The choice
points generate branches in a search tree of nodes that correspond to computational
processes. The root node of the tree corresponds to an initial procedure call, and child
nodes correspond to disjunctive “continuations” of a parent node. Each continuation
corresponds to a unique instantiation of the parent process’ choice point. Each path
through the tree defines a unique procedure instance. A single PROPEL procedure can
represent a game playing controller as follows:

(Defprocedure play-game (board)

:Body

{(moves « nil)

(Until (game-over? board)

Do (move «— (choose-value (legal-moves board)
:heuristic (best-moves)))

(board «— (change-board move board))
(push move moves))

(print-msg “The solution is: ”* (reverse moves)))

326 R. Levinson/Artificial Intelligence 76 (1995) 319-375

The play-game procedure accepts a structure called a board as input. Until the
board is in some termination state, play-game iteratively chooses a legal move and
then changes the board by applying the selected move to the current board. The moves
are collected and then printed out at the end. If the functions game-over?, legal-moves
and change-board are defined appropriately, this controller could play the 8-puzzle.

The core of our system is a search engine that interprets this procedure, generating
a search tree for the board game. Search nodes in the tree correspond to computational
continuations, with the root node representing the initial procedure call. The search tree
is generated by iteratively selecting and expanding nodes. In this context, expanding a
node corresponds to executing the next instruction of a computational process. Whenever
the instruction

(move — (choose-value (legal-moves board) :heuristic (best-moves)))

is executed, the current node splits, producing child nodes for each legal move. Each
child represents a distinct continuation of its parent, based on the selection of a different
choice.

Although the play-game procedure encodes the control structure required to gener-
ate a single behavior instance, a complete search space is implicitly declared by the
choose-value statement. We use heuristic search control methods to avoid exhaustive
exploration of that search space. In the above example, the heuristic best-moves is
used to rank the legal moves, and a beam-width is used to restrict the branching factor.
If the functions legal-moves and change-board are designed to model the 8-puzzle,
the resulting search tree looks like a standard search space for the 8-puzzle [33].

This example illustrates a fundamental benefit of the choice point abstraction for con-
trol system programmers. The controller’s behavior (iteratively selecting and executing
legal moves) is encoded independently from the search engine’s behavior (iteratively
selecting and expanding nodes). As the designer learns which moves are better, only the
heuristics change. There is no need to modify the controller’s procedure definition at all.
Since the facility for searching and evaluating alternative procedure instances is parcelled
out, it is not entangled with the controller’s behavior definition. Thus, changing only the
heuristic will produce different behaviors, without interfering with the completeness or
correctness of the controller’s behavior. In addition to being more robust in the face of
changing heuristics, the automatic handling of choices saves designers from having to
implement their own search engine and backtracking scheme (which would tend to get
intertwined with the controller’s behavior definition).

3. An example application

In this section, we introduce an example that will be used throughout the rest of the
paper. It is a simplified application that has been chosen for illustrative purposes. We
have also begun building a “real” PROPEL application that plans and executes exper-
iments using scientific equipment [28]. For our running example, we have selected a
“pickup-and-delivery” procedure using the NASA Tileworld simulator [34]. The simu-
lator operates asynchronously with PROPEL, and serves as our controller’s sensors and

R Levinson/Artificial Intelligence 76 (1995) 319-375 327

T
s

I

RN

F
H
T

i
NHEEREREE

Fig. 2. A typical Tileworld problem.

Deliver-Tile

Pickup-Tile

k}u-To-Room]

l

Go-Thru-Door

Go-To-Cell

[Go-To-Cell]

M]ove

Grasp

Go-To-Room Go-To-Cell

Go-Thru-Door

Go-To-Cell

Fig. 3. The procedure hicrarchy for our application.

effectors. This example is based on a set of problems originally designed by Bresina [3].

Fig. 2 illustrates a typical Tileworld problem. This is a two-dimensional grid world,
containing a single agent that can MOVE north, south, east, or west in discrete steps.
The grid world includes two rooms, each with two doors. The area between the rooms
is called the hallway. The agent’s job is to move a given tile to a new location. In all
problem instances used in this paper, the agent starts in the lower left corner, at cell (O
0), and its goal is to pick up the tile in the upper right corner, at cell (24 24), and
deliver it to cell (1 1).

Fig. 3 shows that moving a tile consists of first picking the tile up from its current
location, and then delivering it to its destination. To pick up a tile, the agent must move
to the same room as the tile, move next to it, and grasp it with one of its four grippers.
To deliver the tile at its destination, the agent must move into the destination room before
moving to the actual delivery location. In the simplest situation, the agent can move
straight toward the doors, the tile, and the destination location. However, sometimes the
agent faces more difficult situations that involve getting around obstacles.

Fig. 3 illustrates a sketch of the procedure hierarchy for this application. This figure
shows that the structure of this problem lends itself to a procedural decomposition

328 R. Levinson/Artificial Intelligence 76 (1995) 319-375

approach because picking up a tile, delivering it, and moving through doors are natural
subroutines for achieving the overall goal. Also, some procedures such as GO-THRU-
DOOR and GO-TO-CELL can be encoded as modular subroutines that get used by
more than one higher-level procedure. PROPEL’s hierarchical and modular procedures
effectively capture these properties. Fig. 3 only indicates the procedure hierarchy in our
application. The next section discusses the use of iteration, conditional and choice point
constructs by examining the procedure definitions in more detail.

3.1. Example procedure definitions

We present the following procedure definitions to serve three purposes. First, they
illustrate the syntax of our action representation. Secondly, they provide a concrete
definition of our example controller’s behavior. And finally, they are used in Section
4 to illustrate the technical discussion of how PROPEL works. See Appendix A for
PROPEL’s full grammar specification, and see Appendix B for the full listing of PROPEL
procedures used in this application.

(Defglobal *state* (read-sensors))

We begin by declaring a global variable called *statex* to store the sensory state of
the environment. This PROPEL variable is not the same as a standard “global” variable
in LISP and will be described further in Section 4. The LISP function read-sensors
identifies the locations of the agent, the tile to be delivered, and the static obstacles.
The sensors also determine if the agent is grasping a tile with one of its four grippers.
For this example, we assume the agent has global sensing capabilities so that it sees
the contents of all 625 grid cells. We discuss the effects of relaxing this assumption in
Section 7.

(Defprocedure move-tile (tile destination)
:Body
(pickup-tile tile)
(deliver-tile destination))

Move-tile is the top-level procedure for moving a tile to a given location. When
a top-level PROPEL procedure is invoked, it initializes all global variables. So, when
move-tile is invoked, the *statex* variable will be initialized by reading the sensors
as described above. The move-tile procedure calls one subroutine to pick the tile up
from its current location, and another subroutine to deliver it to the destination location.

(Defprocedure pickup-tile (tile)
:Body
(tile-loc « (get-tile-loc tile *state*))
(go-to-room (what-room? tile-loc))
(go-next-to-cell tile-loc)
(grasp-tile (adjacent-direction (get-agent-loc *state*) tile-loc)))

The pickup-tile procedure first binds a local variable, tile-loc, to the tile’s cell
coordinates. This is achieved by calling the ordinary LISP function get-tile-loc to

R. Levinson/Aritificial Intelligence 76 (1995) 319-375 329

perform a simple lookup operation using the global variable *state*. The local variable
is then used in the next three statements. After going to the room that contains the tile,
the agent moves to a cell next to the tile, and then grasps the tile. This procedure
illustrates the use of both local and global variables, and the use of ordinary LISP
subroutines.

(Defprocedure go-to-room (destination-room)
:Body
(agent-room «— (what-room? (get-agent-loc *state*))})
(IF (not (equal agent-room destination-room))
Then (IF (not (hallway? agent-room))
Then (go-thru-door agent-room ’exit))
(IF (not (hallway? destination-room))
Then (go-thru-door destination-room ’enter))))

Go-to-room encodes the behavior for going to a room. If the agent is not already
in the destination room, then if it is not in the hallway, it exits the current room.
After the agent is in the hall, it will enter the destination room unless the hall is the
destination. This procedure illustrates the conditional flexibility provided by our action
representation.

(Defprocedure go-thru-door (room direction)
:Body
(door-loc « (choose-value (door-locations room)
:heuristic (closest-loc (get-agent-loc *state*))))
(doorstep-loc «— (get-doorstep-location door-loc direction))
(go-to-cell doorstep-loc)
(move-dir «— (adjacent-direction doorstep-loc door-loc))
(IF (grasping-object? *state*)
Then (carry move-dir)
(carry move-dir)
Else (move move-dir)
{move move-dir)))

The go-thru-door procedure is used for both entering and exiting a room. Since each
room has two doors, the agent must first choose which door to use. The choose-value
statement in this procedure represents that choice point. After choosing a door, the agent
locates the cell adjacent to the door, called the doorstep. Depending on whether the agent
is entering or exiting the room, the doorstep will be on the inside or the outside of the
room. After going to the doorstep, the agent takes two steps through the doorway. If the
agent is grasping a tile, go-thru-door calls the carry procedure to get through the
doorway, otherwise it calls the move procedure. Aside from going through doorways, all
movement by the agent, including going to the doorstep, is controlled by the workhorse
subroutine go-to-cell which is shown below:

330 R. Levinson/Artificial Intelligence 76 (1995) 319-375

(Defprocedure go-to-cell (goal-loc)
:Body
(Until (equal (get-agent-loc *state*) goal-loc)
Do (move-dir «
(choose-value '(N S E W)
:heuristic (closest-dir (get-agent-loc *state*) goal-loc)))
(choose-procedure (take a step in move-dir goal-loc)

:heuristic (prefer-first-choice))))

The go-to-cell subroutine is called in order to move the agent to a door, tile, or
destination location. It is also where most of the search occurs in the application. The
procedure instructs the agent to go to a location by repeatedly choosing a direction
and then choosing and executing a subroutine for moving in that direction, until it
is in the goal location. There are thus two choice points on each iteration, one for
selecting the direction and one for selecting the action. This procedure illustrates a
second form of choice point that PROPEL supports: the choose~-procedure statement.
This statement is a nondeterministic subroutine call, in contrast with choose-value,
which is a nondeterministic assignment statement. Choose-procedure can be viewed as
an instruction to achieve a subgoal. In this example, the subgoal is “take a step in move-
dir toward goal-loc”. Choose-procedure statements will be discussed further in Section
4. Without any obstacles to cause backtracking, the solution for our Tileworld example
requires nearly 100 iterations through this loop, passing through nearly 200 choice
points. PROPEL prevents endless loops by detecting and pruning redundant (duplicate)
search nodes.

3.2. Features of this example

The first important property of this example is that it illustrates the procedural ex-
pressiveness of PROPEL. The natural decomposition of this problem lends itself to the
general programming techniques of hierarchical and modular procedures with iterative
and conditional control constructs. Reactive languages such as PRS [17], RAPs [15],
and RPL [31] can also represent the hierarchical, conditional and iterative structure of
this example, but they encode only deterministic programs that correspond to our default
program instances. We contrast this with PROPEL’s ability to encode a planner’s search
space of disjunctive procedure instances using choice points.

This example also illustrates how a controller may be faced with situations of in-
creasing difficulty. The controller was initially written only to move a tile within a
single room. Go-to-cell’s simple Manhattan distance minimization heuristic worked
fine in this simple case. Then the controller was to be used in a more complex situation
that required moving a tile between different rooms. We used our original hill-climbing
procedure from the simple case as a subroutine for this harder case, but we needed to
add new procedures for entering and exiting rooms. Finally, the controller is required
to move the tiles in the presence of obstacles that trap the hill-climbing heuristic. If the
location and size of obstacles is not known until run time, then an efficient plan cannot
be pre-programmed.

R. Levinson/Artificial Intelligence 76 (1995) 319-375 331

PROPEL Core
Library g

Fig. 4. The PROPEL core: a procedural search engine.

Nondeterministic Interpret <procedure-name>

Procedures with
Heuristics

Procedural
-] Search Engine

. R Search Record

This example also allows us to explore the tradeoffs between search and pre-program-
med approaches towards extending a controller’s operating range. The designer can have
the controller print error messages when it runs into obstacles, or they can build in a
form of reactive behavior that can physically backtrack out of deadends. A third option
is to use predictive search at run time to generate an appropriate plan. PROPEL allows
us to explore and evaluate each of these options. In Section 5 we present experiments
that demonstrate some of these options.

4. How PROPEL works

In this section, we present a technical description of how our system operates by
presenting PROPEL’s primary data structures and processing algorithms. We use the
above Tileworld example to illustrate the technical concepts throughout the discussion.

We present PROPEL as a sequence of three design layers. The first layer is the core
of the system. It consists of a library of procedures that contain choice points, and a
procedure interpreter that operates as a search engine. The second design layer includes
extensions to the core that are required when the procedures use physical sensors and
effectors. In this context, the search engine operates as both a planner and a controller.
The third design layer involves the development of application-specific executives that
manage the relationship between the planner and the controller to achieve closed-loop
planning and control.

4.1. The core: a procedural search engine

The core of our system is a procedural search engine that implements the choice
point abstraction. The search engine operates on arbitrarily complex procedures instead
of specialized, procedurally inexpressive representations like IF-THEN rules or STRIPS
operators [14]. We are not using any sensors or effectors at this first design layer,
so we do not distinguish the concepts of planning, sensing, or control from strictly
computational behavior.

Fig. 4 illustrates the components in this corc layer. First, the designer enters a set
of application-specific control procedures that contain choice points and heuristics. The
procedures are immediately parsed into a form required by the search engine. When the
search engine is instructed to interpret a specific procedure, it generates a search tree of
procedure instances. Each leaf in the tree corresponds to a distinct procedure instance

332 R. Levinson/Ariificial Intelligence 76 (1995) 319-375

defined by the path of choices from the root to the leaf. A search record that describes
the search tree is produced as the output of the search engine.

4.1.1. Nondeterministic procedures

A PROPEL application begins with a set of nondeterministic procedures that are
represented in a dialect of LISP that includes two forms of choice points. In particular,
choose-value statements correspond to nondeterministic assignment statements, and
choose-procedure statements correspond to nondeterministic subroutine calls. Both
statements represent a step in the program where a single choice must be selected
from a set of alternatives before the program can continue. The go-to-cell procedure
below illustrates both types of choice points. Each choose-statement includes a heuristic
function that sorts the choices according to local heuristics. PROPEL also uses global
heuristics which are discussed when we describe the search engine later in this section.

(Defprocedure go-to-cell (goal-loc)

:Body

(Until (equal (get-agent-loc *state*) goal-loc)

Do (move-dir «
(choose-value (N S E W)
:heuristic (closest-dir (get-agent-loc *state*) goal-loc)))
(choose-procedure (take a step in move-dir goal-loc)
:heuristic (prefer-first-choice))))

Although not present in the go-to-cell procedure shown above, procedures may
optionally be associated with a goal pattern. Choose-procedure statements use the goal
patterns to match a set of potential subroutine procedures. Thus, the choose-procedure
statement operates like a subgoal statement in a backward chaining system [33] that uses
a goal pattern to identify matching procedures. Each procedure may also be associated
with an optional set of preconditions that are tested whenever the procedure is invoked
(either explicitly or by matching a choose-procedure goal). See PROPEL'’s full grammar
specification in Appendix A for more detail.

The choose statements are called nondeterministic because the outcome of their ex-
ecution is not uniquely defined [20]. PROPEL is written in LiSP, which is itself a
deterministic program. However, PROPEL procedures are nondeterministic above the
software abstraction level of the choice point, because each choose statement has as
many outcomes (continuations) as it has choices.

This integration of search into a general-purpose programming language is also useful
for non-planning applications such as fault diagnosis and other forms of hypothesis
generation. However, we will focus exclusively on planning applications in this paper.

4.1.2. The parser

The parser converts the nondeterministic procedures into flat code that does not contain
any high-level iteration or conditional constructs. For example, the above go-to-cell
procedure is converted into the form shown below. The Until loop was flattened into
the conditional GOTO at step 0 and the unconditional GOTO at step 3.

R. Levinson/Artificial Intelligence 76 (1995) 319-375 333

(Defprocedure GO-TO-CELL (GOAL-LOC)

:Body

0: (IF (EQUAL (GET-AGENT-LOC *STATEx) GOAL-LOC) GOTOD 4)

1: (MOVE-DIR <~

(CHOOSE-VALUE (N S E W)
:HEURISTIC (CLOSEST-DIR (GET-AGENT-LOC *STATE*)
GOAL-LOC)))

2: (CHOOSE-PROCEDURE (TAKE A STEP IN MOVE-DIR GOAL-LOC)
:HEURISTIC (PREFER-FIRST-CHOICE))

3: (GOTO 0))

Translating loops and complex conditionals into simple GOTO statements facilitates
backtracking and the ability to interrupt the search process at any time. The flat code
can be more easily split into continuations at choice points such as those at steps 1
and 2 in the procedure below. The flat code also allows the interpreter to execute one
instruction at a time so that it can be interrupted after any instruction. Otherwise it could
be difficult deciding where to interrupt a complex conditional or iterative construct. The
parsed procedures are stored in the procedure library, to be accessed by the procedural
search engine.

4.1.3. The procedural search engine

The search engine generates a space of disjunctive procedure instances by interpreting
the parsed procedures. This process produces an or-tree [33], where nodes correspond to
computational processes and arcs correspond to choice point selections. When the search
engine interprets a choice point statement, the node splits into children that represent
alternative continuations of the parent node. Since nodes correspond to computational
continuations, the search process becomes an effort to schedule competing continuations.
The leaf nodes are called open because only they are eligible for scheduling. Interior
nodes are called split, and they cannot be scheduled for expansion.

The search tree is stored in a structure called the search record which is the primary
output of the search engine. This record contains a pointer to the root node, a list of
open nodes (leaves), a list of success nodes, a list of failed nodes, and a list of split
nodes. The PROPEL data structures are defined as:

Search-Record — ((root (node)) (open (node)x)
(success {node)x) (failed (node)x) (split (node)x))

Node — ((name) (control-stack) (global-vars) (parent-node)((child-node)+*))
Control-stack — ({frame)+)

Frame — (frame (procedure-name) (program-counter) (bindings})
Program-counter — (integer)

Global-vars — (bindings)

Bindings — (({symbol} . (value})x)

Each node in the search space corresponds to a computational process with a control
stack. Each stack consists of a list of frames. Each frame contains a procedure-name, a

334 R. Levinson/Artificial Intelligence 76 (1995) 319-375

program counter and a set of local variable bindings. A stack frame’s program counter
indicates the next instruction to be executed. An example of a node’s control stack can
be seen below:

((FRAME :PROCEDURE-NAME GO-TO-CELL :PROGRAM-COUNTER 2
:BINDINGS ((*VALUE* . W) (MOVE-DIR ’S)
(AGENT-LOC ’ (0 2)) (GDAL-LOC ’(0 1))))
(FRAME :PROCEDURE-NAME DELIVER-TILE :PROGRAM-COUNTER 3
:BINDINGS ((AGENT-DESTINATION ’(0 1))
(AGENT-DIR ’W) (DESTINATION ’(1 1))))
(FRAME :PROCEDURE-NAME MOVE-TILE :PROGRAM-COUNTER 2
:BINDINGS ((TILE ’*) (DESTINATION ’(1 1)))))

This control stack indicates that the top-level procedure, move-tile, was invoked to
move the tile named “*” to cell (1 1). Move-tile called subroutine deliver-tile,
which called subroutine go-to-cell, which is ready to execute step 2. According to
the bindings for that top frame, the agent is at location (0 2), it has just moved south,
and is about to move west to the goal location (0 1). The special binding for *value*
indicates the most recent choice point selection. This is discussed further in the next
section.

In addition to a control stack. each node also contains a set of global variables that
are accessible to all procedures on the stack. Note that these variables are only global
for a given node, and are thus not the same as standard “global” variables in LISP. When
a root node is created, the global variables are initialized by evaluating their associated
initialization forms. In our example, the *state* variable presented in Section 3.1 is
such a global variable.

The search algorithm

The search engine functions as a scheduler that uses heuristics to bias the amount of
CPU time allotted to competing continuations. Local and global heuristics are both used
to bias the search. The search algorithm that schedules the CPU time for search nodes
is presented below.

(defun node-scheduler (search-record)
(loop until (terminate? search-record)
do (loop for node in (best-nodes search-record)
do (expand-node node search-record))))

The node-scheduler algorithm itcratively selects a subset of nodes for expansion until
the termination criterion is satisfied. Expanding a node causes that node’s next instruction
to be executed, and thus corresponds to giving that node a quantum of CPU time. The
function best-nodes selects a preferred subset of nodes according to a combination of
global and local heuristics. The default definition of best-nodes provides depth-first
search by simply returning the first open node. However, the functions best-nodes
and terminate? are typically programmed by the designer to use application-specific
knowledge heuristics. For our Tileworld example, these functions are defined as fol-

R. Levinson/Artificial Intelligence 76 (1995) 319-375 335

lows:

(defun terminate? (search-record)
(or (success-nodes search-record)
(null (open-nodes search-record))))

(defun best-nodes (search-record)
(1ist (first (sort (open-nodes search-record) ’rank<))))

The function terminate? returns TRUE when a solution has been found or there are
no more open nodes to expand. The function best-nodes serves as a global heuristic,
and can use any application-specific method to select a subset of the open nodes.
For this example, we defined best-nodes to sort the open nodes in increasing rank
and then return the node with the lowest ranking. The rank is determined by a local
heuristic function when each node is created. This is discussed in more detail later
in this section. Most search strategies such as depth-first search or A* [33] can be
implemented by defining best-nodes appropriately. If we define terminate? to use a
search depth limit, and we define best-nodes to perform A* search, the result would
be similar to RTA* [24], but in the context of PROPEL’s action representation and
search space.

Expanding nodes

Most of the node-scheduler’s work is performed by the expand-node function.
Using the process scheduling metaphor, expanding a node is analogous to giving a
process some CPU time. Expand-node executes the next instruction of the top frame on
a given node’s control stack. Instructions are executed by consulting a table of handlers
for each type of PROPEL expression. The handler for assignment statements pushes new
bindings on the current frame’s binding list, and the handler for subroutine calls pushes
a new frame onto the stack. The program counter is incremented after executing each
instruction, except for goto statements which cause the program counter to jump to a
nonsequential step number. Conditional goto statements are handled by updating the
program counter based on testing the condition. Whenever the program counter is equal
to the length of the procedure, the procedure is considered complete, and the frame is
popped off of the stack. The search engine can be interrupted after each cycle of node
expansion.

The functional programming feature of “returned values” is achieved by pushing the
value of a procedure’s last expression onto the bindings of the next frame using the
special binding *value* as in ’> (*value* . 3). An example of this was seen in the
sample control stack presented earlier in this section. Whenever a node is expanded, it is
first checked for a returned value, and if found, the value is syntactically substituted for
the subroutine call in the current instruction. After replacing the procedure invocation
with its returned value, the instruction is handled as a simple expression.

Choice point processing
The handler for expanding choose-value and choose-procedure statements is the
central component of the search enginc because it is responsible for generating the

336 R. Levinson/Artificial Intelligence 76 (1995) 319-375

__

(MOVE-TILE * (1 1)}#1
(00)

aosyn2 | |10z
(L] 00)

(MOVE Epé
o

{(MOVEEp3
@0
—

Fig. 5. The search tree for our example.

search space. Expanding a node whose next instruction is a choose statement causes
that node to split into a set of new nodes which serve as unique continuations for each
choice in the choice point. The new nodes are linked as children to the current node,
creating branches in the underlying search tree. The new nodes may be annotated by an
optional local heuristic function before they are pushed onto the open node list. After
splitting, the parent node is removed from the open nodes list and moved to the split
nodes list of the search record. An example of the search tree generated for our running
example can be seen in Fig. 5.

The root node in Fig. 5 corresponds to a top-level procedure invocation of the form:
(move-tile ’* ’(1 1)). This invokes the procedures that were presented in Section
3.1. The first choice point is encountered by the procedure go-thru-door, which must
choose which of two doors to use as an exit; either the door at (10 5) or the door at
(5 10). This causes the root node to split into continuations for each of those choices.
Each node is named after the unique choice associated with that node’s continuation.
For this example, we use best-first search with a beam-width of one. Thus, a single
node is selected for expansion by the node scheduler. That node, labeled “(5 10)#3”,
is repeatedly expanded by the node scheduler. When that node executes the instruction
(go-to-cell ’(5 10)), a frame for the go-to-cell procedure is created and pushed
onto the node’s control stack.

As discussed in Section 4.1.1, the go-to-cell procedure is where most of the search
occurs in this application. Tt iteratively chooses a direction and then an action. When
go-to-cell executes the statement

(move-dir «— (choose-value '(N S E W) :heuristic (closest-dir ...))),

R. Levinson/Ariificial Intelligence 76 (1995) 319-375 337

node (5 10)#3 splits into continuations for each possible move direction. The split
parent is then removed from the open node list. Our heuristic suggests moving east, so
node E#6 is selected as the continuation to be expanded next. After selecting EAST as
the move direction, go-to-cell selects an action by executing the statement

(choose-procedure (take a step in move-dir goal-loc)).

The goal pattern for this choose statement matches both the move and the carry
procedures. When the agent is not holding anything, the preconditions for move will be
satisfied, otherwise the preconditions for carry will be satisfied. Since the preconditions
for these procedures are mutually exclusive, only one child node is created. In Fig. 5,
the agent is not grasping a tile, so move is selected, and the node labeled (MOVE E)#8
is created. After moving east, the agent’s simulated location is at (1 0). Go-to-cell
repeats this process of selecting a direction and an action, resulting in more split nodes,
until the agent’s simulated location equals (5 10).

When a node splits, continuations are created by copying the control stack and global
variables from the splitting node to each child node. Then, each child’s stack is modified
to reflect that continuation’s unique choice point selection. This is achieved by push-
ing a different choice onto the local bindings of each continuation’s top stack frame.
The choice is stored as a value for the special variable *value*, and the program
counter is not incremented. The next time this node is expanded, the choice will be
substituted for the choice point using the same syntactic substitution method as de-
scribed above for handling returned values. For example, each continuation from the
choice point (dir « (choose-value ’(n s e w))) will have a unique choice sub-
stituted for the term on the right hand side of the arrow. After this substitution is
made, the instruction will be treated as a simple assignment statement that does not
contain a choice point. This can be viewed as a form of program transformation, where
the choice point represents a class of values that are syntactically transformed into
instances.

Local heuristics

The user can associate an application-specific local heuristic function with each choice
point. The heuristics evaluate the choices and annotate the nodes based on local opti-
mization criteria. These annotations can then be accessed by the node-scheduler’s
best-nodes function to determine the nodes’ global ranking. The local heuristics are
optional, and the manner in which choices are annotated and used by best-nodes is
entirely defined by the application designer.

Using a local heuristic is important in our application because of our problem re-
duction framework. We do not want to minimize a global distance function (like A*
[33]) because we must first achieve the subgoals of getting to the doors, which conflicts
with minimizing the global distance for the whole problem. The relationship between
heuristic search and subgoal processing is discussed by Korf in [23].

The closest-dir heuristic shown below is used in our application to rank potential
move directions in the go-to-cell procedure. Local heuristic functions accept explicit
arguments determined by the programmer, and are also passed the list of new child nodes

338 R. Levinson/Artificial Intelligence 76 (1995) 319-375

to be evaluated and annotated with rankings. Our example heuristics use an application-
specific global variable called *rank* to annotate each node. Closest-dir ranks the
planner’s choices as the best with a value of 0. However, we will defer the discussion
of planner choices until we have defined the planner and the controller in Section 4.2.
Without the planner’s advice, directions that decrease the Manhattan distance between
the agent location and the goal location receive a ranking of 1. Directions that increase
that Manhattan distance receive a ranking of 2. Each node is annotated by storing its
ranking on its global variable *rank*. This ordering is then accessed by the best-nodes
function which applies global heuristics.

(defun closest-dir (agent-loc goal-loc choice-nodes
&optional planner-choice)
(let* ((agent-x (first agent-loc))
(agent-y (second agent-loc))
(goal-x (first goal-loc))
(goal-y (second goal-loc)))
(loop for choice-node in choice-nodes
do (setq choice-value (get-choice-value choice-node))
(set-global choice-node ’*rankx*
(if (equal choice-value planner-choice) 0
(case choice-value
(w (if (> agent-x goal-x) 1 2))
(e (if (< agent-x goal-x) 1 2))
(s (if (> agent-y goal-y) 1 2))
(n (if (< agent-y goal-y) 1 2))))))))

A local heuristic like this is an appropriate approach when sequential choice points do
not interact. The local heuristics facilitate the development of non-monolithic objective
functions. Instead of writing a single heuristic function that covers all choice points
in the search space, the local heuristics allow the designer to supply a lot of smaller
heuristic functions. This may provide localization benefits such as decreased coding
complexity.

Success and failure nodes

An empty control stack indicates that the initial top-level procedure has been com-
pleted. Thus, when the last frame is popped off of a node’s control stack, that node is
considered a success node, and it is moved from the open nodes list to the success nodes
list of the search record. Explicit FAIL statements can be used to prune bad procedure
instances by removing them from the open nodes list. A procedure’s preconditions pro-
vide an implicit FAIL statement. If any precondition cannot be satisfied, the current node
is considered a failure node and it is moved from the open nodes list to the failure nodes
list of the search record. This is how backtracking occurs: removing an open node will
allow a new continuation to be scheduled. Node failures also occur when no matching
procedures with satisfied preconditions can be found for a choose-procedure state-
ment, or if a choose~-value statement contains an empty set of choices. Also, a new

R. Levinson/ Ariificial Intelligence 76 (1995) 319-375 339

node is considered redundant, and removed irom the open node list, if it has exactly the
same control stack as a node that already exists.

Summary of PROPEL s search control techniques

PROPEL uses four methods to control the exponential explosion of its search space.
The most important factor in controlling search within PROPEL is the use of procedure
schemas. Choice points only appear in isolated pockets within a PROPEL procedure
definition. Thus, most of the controller’s behavior is deterministic and no search is
involved at all. The size of the search space is therefore only a function of the number
of choice points, not the size or complexity of the program. The second most important
search control technique in PROPEL is the use of both local and global heuristics. The
value of heuristics in controlling plan search is described by Korf in [23]. The third
form of search control is the use of subgoaling. One of our two forms of choice point,
the choose-procedure statement, corresponds to a subgoal achievement statement. As
noted in [23], the use of subgoals can drastically reduce the size of a search space.
Node failures represent the final technique for controlling search in PROPEL. When a
node fails due to the explicit use of a FAIL statement, or an empty set of choices, or
unsatisfied preconditions, it is pruned from the search space.

4.2. Planning and control

This section describes the extensions required when PROPEL procedures use physical
sensors and effectors. Only within the context of sensors and effectors can we distinguish
between using the procedural search engine for planning and using it for control. First,
remember that in our system planning means using predictive search to select effector
commands. It requires mechanisms for simulating the effects of physical actions. Control
means reading sensors and executing effector commands in bounded time (without
search). When no planning time is available, the controller will execute a heuristically
chosen default plan. However, if planning time is available, the planner can consider
and evaluate other choices in order to advise the controller accordingly. The role of the
planner is to pre-program the controller at run time to operate in unusual situations.
At this second design layer we are still talking about open-loop planning and control,
where a human interacts with the planner and the controller. Closed-loop planning and
control systems will be the subject of Section 4.3.

Fig. 6 illustrates the PROPEL architecture after extending the core to handle sensors
and effectors. The primary changes include using two copies of the procedural search
engine, one for the planner and one for the controller. At design time, the user enters a
set of application-specific control procedures. At run time, the user instructs the planner
to project a given procedure for a given period of time. The planner performs its search
based on run time sensor information that describes the current external state. The search
process continues until either a solution is found, or the time limit is expired, or the
search space is exhausted. The user then instructs the controller to execute the procedure
using choice point advice that is extracted from the planner’s search record.

We now describe each of these components in more detail, starting with the sensors
that are used to receive input from the external environment. The raw sensor readings

340 R. Levinson/ Artificial Intelligence 76 (1995) 319-375

pass through an application-specific sensor interpreter component that is outside the
scope of this paper. The sensor interpretation can be as simple or as complex as required
for the application. Its function is to convert the sensory input into whatever form is
required by the control procedures. The results of sensor interpretation are stored in vari-
ables within the control procedures. As described in Section 3.1, our example application
uses an application-specific global variable called *statex to record sensory information
in the form of predicates such as (agent-location *(2 5)) and (temperature 25).

4.2.1. The planner

The planner is implemented using the procedural search engine described in Section
4.1.3, after extending it to simulate sensing and effecting. The planner is invoked by
a calling the function Plan!, defined below, with either a procedure invocation such
as (move-tile ’* ’(1 1)), or a previously existing search record as an argument.
The search record option will be used to pass execution failure information from the
controller to the planner. This is described further in Section 4.3 where closed-loop
planning and control is discussed. If a time limit is provided, the planner will terminate
after that amount of time has elapsed. The function Plan! performs the same node-
scheduling activity that was discussed in Section 4.1.3. After setting up the search record,
Plan! iteratively selects and expands a subset of continuations until the termination
criterion is satisfied. The programmer customizes the functions planner-best-nodes
and planner-terminate? to suit their application.

(defun Plan! (&key invocation search-record time-1limit)
(if invocation
(setq search-record (init-search-record invocation)))
(if time-limit (set-deadline search-record time-limit))

(loop until (planner-terminate? search-record)
do (loop for node in (planner-best-nodes search-record)
do (expand-node node search-record ’plan)))

(cond ((search-record-success search-record)
(print-msg ‘ ‘Search Success!’’))
((search-record-open search-record)
(print-msg ‘‘Time Limit Expired!’’))
(¢t (print-msg ‘‘Search Failure: No Open Nodes!’’)))
search-record)

Simulating actions

We do not want the planner to cause changes in the external environment. Since
effector commands produce changes in the environment, we cannot actually execute
them during the planner’s search process. Therefore effector commands must be simu-
lated. To facilitate this, procedures can be provided with a simulation description that
will only be interpreted by the planner. If a simulation description is provided for a
procedure, the planner will always interpret the simulation instead of the body. If no

R. Levinson/Artificial Intelligence 76 (1995) 319-375 341

Plan! <procedure> Search Record
<time-limit>

|

Control : -
Procedures Procedure Sensor
Library Interpreter
T . [
Controller
Commands Readings
Y
Execute! <procedure> I:L_:J
<choice-pt. advice> Effectors Sensors

Fig. 6. Using sensors and effectors.

simulation description is provided, the planner interprets the body. On the other hand,
the controller will always execute the body, which will activate the effectors. The move
procedure shown below has a simulation description which defines how to simulate the
move-agent effector command.

(Defprocedure move (?dir)

:Goal
(take a step in 2dir ?goal-loc)

:Preconditions
(not (grasping-object? *state*))
(agent-loc — (get-agent-loc *state*))
(target-loc — (adjacent-cell agent-loc ?dir))
(cell-empty? target-loc *state*)
(in-bounds? target-loc)

:Body
(move-agent dir)
(wait (expected-action-duration "'move))
(*state* «— (read-sensors))

:Simulation
(*state* «— (remove-fact *(at agent-loc) *state®))
(*state* «— (add-fact °(at target-loc) *state*)))

To simulate moving in our example application, we explicitly add and delete facts that
simulate the physical effects of the move-agent effector command. During planning,
the simulation uses the LISP functions remove-fact and add-fact to maintain the
global variable *state*. These statements function like the classical add and delete
lists of STRIPS fame [14]. However, any application-specific method can be used for

342 R. Levinson/Artificial Intelligence 76 (1995) 319-375

modeling simulations. The add and delete list approach presented here is simply the
method we’ve chosen for this example application. Since the simulation can contain
nested loops, conditionals, arbitrary LISP function calls, and even choice points, we
can simulate highly conditional operators and effects. It has traditionally been difficult
to model highly conditional effects for planners that use analytical techniques such as
TWEAK’s Modal Truth Criterion [7].

Failure nodes occur when the preconditions fail for a deterministic subroutine call, or
if there are no subroutines with enabled preconditions to match a choose-procedure call.
In our example, this occurs when an obstacle causes a failure of the (cell-empty?
target-loc *state*) precondition of the move procedure. When this happens, the
node is simply removed from the list of open nodes. This is how backtracking occurs:
removing an open node will allow a new continuation to be scheduled.

The primary product of the planner is a sequence of choices that correspond to the
arcs along a path in the search tree from the root node to a leaf node. These choices are
stored as IF {condition) THEN (action) rules, and used by the controller’s local heuristic
functions when it executes a choice point statement. The rules say “IF (the control
stack looks like x) THEN (select choice y)”. We call these rules Situated Control Rules
(SCRs) after the terminology of Drummond [11]. The production and use of SCRs is
described further in Section 4.2.2, where we discuss the integration between the planner
and controller.

Plan representation

Our plan representation is uple of the form (Procedure-name, SCRs). Thus a plan
is defined as a top-level procedure call and a set of choice selection rules for choice
points that may be encountered during the execution of the top-level procedure and its
subroutines. The SCRs set may be empty, or it may only provide coverage for some
choice points.

Anytime planning properties

As discussed in the Section 1.1, Dean and Boddy have identified a class of algorithms
called anvtime algorithms that are useful for meeting the demands of time-dependent
planning [9]. They define anytime algorithms to be procedures that are interruptable and
ready to provide increasingly useful results at any time [2,9]. Further, they identified
heuristic search methods as being likely candidates for use as anytime algorithms.
PROPEL combines heuristic search with anytime interruptability for algorithms written
in a general programming language. The planner’s partial results can be used when
it is interrupted at any time. Since the procedures are simulated by executing each
instruction in chronological order, all partial results start at the beginning of the plan.
Thus, the planner can be interrupted after any instruction and the partial planning results
will provide coverage from the beginning of the plan, where the controller needs it
first.

Since the search engine can be interrupted after each node expansion, the grain size of
interruptability is the amount of time required to expand a node. Most node expansions
take only a small fraction of a second to evaluate conditions, or push a new frame onto

R. Levinson/Artificial Intelligence 76 (1995) 319-375 343

the control stack, or update the program counter, or process a choice point. However, an
instruction may also be an arbitrary LISP function. Thus, lengthy computations should be
written as PROPEL procedures rather than LISP in order to achieve a required grainsize
of real-time interruptability.

An important property of anytime algorithms is that their results are expected to
improve as computation time increases. This is not a guaranteed property of PRO-
PEL applications because the planner is not inherently “anytime”. However, PROPEL’S
inherent interruptability and general programming constructs facilitate the study and
development of anytime algorithms. Any particular program written in this language
may or may not provide incremental improvement depending on interactions between
the heuristics and the environment. The value of partial plans produced by PROPEL will
be similar to that produced by RTA* [24], or Reaction-First Search [13] depending
on the heuristics that are used. Understanding how to generate monotonically improving
partial plans will require much further study.

Instead of using a time limit as a termination test, anytime algorithms are typically
described as being halted by some asynchronous process. We have used the time limit
approach here to simplify the presentation by avoiding the need to present a method
of asynchronous communication. The planner presented in this paper accepts a time
limit which is used only in the termination test, as shown in Appendix B. We have
simply defined the planner-terminate? function to terminate when the deadline ex-
pires. The time limit is not used as a basis for procedure selection as in the case of
“contract” algorithms [35], where different decision procedures would be selected de-
pending on the amount of available computation time. We have also implemented a
version of planner-terminate? that tests the status of an asynchronous flag. Whether
the planner uses a time limit to terminate or it receives an asynchronous halt message,
the node-scheduler is interrupted at an arbitrary point in time.

4.2.2. The controller

The controller always executes procedures in bounded-time because it never uses
search. The controller is implemented using a procedural search engine identical to that
of the planner, but its best-nodes and terminate? functions are modified to prevent
backtracking. Thus the controller always uses best-first search with a beam-width of
one, and any node failure will cause the controller to terminate instead of automatically
backtracking.

To prevent backtracking, we modify the controller’s choice point processing as fol-
lows: Although the controller only uses the single (best) open node, it goes through
the same node splitting behavior as the planner. However, when a choice point is ex-
panded by the controller, the previously open nodes are moved to a special list in
the search record called closed nodes, before storing the new nodes as the only open
nodes. This prevents the controller from automatically backtracking after node failures.
The closed nodes can be resurrected for later use by the planner in cases of execution
failures.

344 R. Levinson/Artificial Intelligence 76 (1995) 319-375

(defun Execute! (&key invocation search-record scrs)
(if invocation
(setq search-record (init-search-record invocation)))
(if scrs (set-scrs search-record scrs))

(loop until (controller-terminate? search-record)
do (expand-node (controller-best-nodes search-record)
search-record ’execute))

(if (search-record-success search-record)
(print-msg ‘¢ ‘Execution Complete!’’)
(print-msg ‘ ‘Execution Failure!’’))

search-record)

Our controller is invoked by a call to the function Execute!, which is shown
above. It accepts an invocation such as (move-tile ’* ’(1 1)), or a search record
as an argument, just like the planner. The controller also accepts choice point ad-
vice in the form of SCRs. If SCRs are provided, they will be used by the local
heuristic functions to annotate the continuations produced when splitting a choice
point.

The function Execute! shares a nearly identical structure with the planner, Plan!,
defined in the previous section. It too operates as a node scheduler, using its own
versions of the termination test and best-nodes function. As with the planner, the
controller-terminate? and controller-best-nodes functions are application-
dependent. Although the planner and controller can use different versions of the
best-nodes function, it is not always necessary as long as they both use a beam-
width of one. For our Tileworld application, the definition of controller-best-nodes
is identical to that of planner-best-nodes (see Appendix B). However, the
controller-terminate? function must be different from planner-terminate? so
that the controller terminates after any node failure.

Since the controller is connected to the real world, it must read physical sensors
and execute effector commands instead of simulating them. This occurs by executing
the body of a procedure such as move which was presented in the previous section.
The controller always executes the procedure’s body, unlike the planner which uses
a procedure’s simulation when it is provided. In our example, the body of the move
procedure shown in the previous section first issues an effector command that moves
the agent. It then waits for the expected duration of the action before updating the
global variable *statex* by reading the sensors. In our application, all actions have a
0.5 second duration. This example shows that the programmer must explicitly update
the sensor readings.

An interesting side benefit of using the same search engine for planning and control
is that the redundant node checker used during search can effectively detect execution
loops whenever a node is created with a control stack identical to an existing node.
In some applications, it is appropriate to treat redundant execution nodes as failures,
while in other applications it is not. Thus this feature can be switched on or off by the
designer.

R. Levinson/Artificial Intelligence 76 (1995) 319-375 345

Integrating advice from the planner

The controller accepts optional choice point advice from the planner in the form of
Situated Control Rules (SCRs) [11] that map a given control-stack to a choice point
selection. When the controller encounters a choice point, it looks for an SCR with a left
hand side that matches the current control stack. If a match is found, the SCR’s right
hand side is passed to the local heuristic function as described in Section 4.1.3.

An example SCR can be seen below. This SCR advises the controller to select the
choice (MOVE ’E) when the current control stack matches the left-hand side of this
rule. We can see from the flattened version of go-to-cell in Section 4.1.2 that step 2
is a choose-procedure statement. That statement is the choice point where this SCR will
be used.

IF the stack equals:

(FRAME :PROCEDURE-NAME GO-TO-CELL :PROGRAM-COUNTER 2
:BINDINGS ((MOVE-DIR ’E) (AGENT-LOC ’(0 0))
(GOAL~LOC *(5 9))))
(FRAME :PROCEDURE-NAME GO-THRU-DOOR :PROGRAM-COUNTER 2
:BINDINGS ((DOORSTEP-LOC ’(5 9)) (DOOR-LOC ’ (5 10))
(DIRECTION ’EXIT) (ROOM ’ROOM-A)))
(FRAME :PROCEDURE-NAME GO-TO-ROOM :PROGRAM-COUNTER 5
:BINDINGS ((AGENT-ROOM ’ROOM-A)
(DESTINATION-ROOM *ROOM-B)))
(FRAME :PROCEDURE-NAME PICKUP-TILE :PROGRAM-COUNTER 1
:BINDINGS ((TILE-LOC ’(24 24)) (TILE ’%)))
(FRAME :PROCEDURE-NAME MOVE-TILE :PROGRAM-COUNTER 1
:BINDINGS ((TILE ’*) (DESTINATION ’(1 1))))

THEN take action (MOVE ’E)

SCRs are collected for a given search record by calling the collect-scrs function,
shown below, with a search-record as its argument. This function starts with the first
success node if one exists. If the planner is halted before a success node has been
found, then SCR collection begins with the best open node. The control stack and
selected choice for each node on the path from the leaf to the root is then col-
lected.

(defun collect-scrs (search-record)
(let ((mode (or (first (success-nodes search-record))
(first (planner-best-nodes search-record))))
parent scrs)
(loop while (setq parent (get-node-parent node))
do (push (get-scr node) scrs)
(setq node parent))

scrs))

346 R. Levinson/Ariificial Intelligence 76 (1995) 319-375

Concurrent procedures

Since effectors usually operate in parallel, practical control systems often require the
use of concurrent control programs. The management of concurrent control processes
can be very difficult due to complex timing constraints and interactions. Although
PROPEL does not provide any general solution to this problem, it does support the use
of concurrent procedures. This is achieved by modifying the search node data structure
so that each node contains one or more threads, each of which contains a separate
control stack. Now, whenever a node is expanded, the next instruction in each of its
threads is executed. This requires that we extend PROPEL’s grammar with three new
expressions. The run-process statement will start a concurrent procedure by creating a
new thread for the current node. The wair-until statement will prevent a thread from
being expanded until a given condition becomes true. The sleep statement is like wait-
until except it waits for a period of time to elapse. Concurrent procedures also facilitate
the planner’s simulation of continuous and servo processes.

4.3. Closed-loop planning and control

The techniques described in the previous sections were application independent. How-
ever, defining a relationship between planning and execution is largely application-
specific. For example, physical backtracking may or may not be possible, and deadlines
will vary. In this section, we describe how to build an autonomous link between the
planner and the controller that were presented in Section 4.2.

For autonomous systems, human control of when to plan and when to act is not
possible. Thus we need an executive that determines how to distribute the total available
time between planning and execution. Issues that must be handled by the executive
include deadline management, execution failures, and a changing environment.

Fig. 7 shows a generic architecture for an executive that coordinates the planner
and the controller described in Section 4.2. The user enters a procedure name and
a deadline. The executive then determines how much time to spend planning using
a method provided by the designer. We will return to this issue later. The executive
invokes the planner described in Section 4.2.1, called Plan!, for the allotted time.
When the planner terminates, it returns its search record to the executive. The executive
collects SCRs from the planner’s search record and then invokes the controller using the
Execute! function described in Section 4.2.2, passing in the SCRs. When the controller
terminates, it returns its own search record to the executive. In addition to SCRs, a
concurrent executive could extract plan duration predictions from the evolving search
record in order to help it decide when to stop planning and start acting.

The executive detects execution failures, such as failed preconditions, by inspecting
the failed nodes list of the search record returned by the controller. When an execution
failure occurs, the executive can pass a copy of the controller’s search record to the
planner. This record describes the tree of nodes generated during execution. Although
the search tree was generated by the controller, the planner can backtrack through the
tree to generate a set of SCRs that can be used by the controller to recover from the
failure. This tight integration between planning and control is made possible because
the two components share the same data structures and interpreter.

R Levinson/Artificial Intelligence 76 (1995) 319-375 347

Procedure name & deadline

Executive

Control
Procedures Planner Sensor

nterpreter

Commands Readings

Fig. 7. An autonomous executive.

The relationship between the planner and the controller will depend on many appli-
cation factors. For instance, physical backtracking may or may not be possible in any
given application. Thus, the executive must be programmed by the designer. A desire to
experiment with different executive models for complex closed-loop control programs
was a primary motivation behind the design of PROPEL.

Depending on the application, several different styles of executive can be developed.
This simplest is one-shot planning followed by execution. A more advanced approach
is to interleave planning and execution. Finally, the most sophisticated approach is to
have the planner and controller run concurrently. For our Tileworld example, we have
performed experiments with both the one-shot and the interleaved approaches. The
results from these experiments are presented in Section 5. First we describe how the
executives work.

4.3.1. One-shot planning then execution

In the one-shot planning exccutive, the agent plans for some initial period of time
before executing. If the planner has enough time to generate a complete plan, the SCRs
are collected and passed to the controller. The SCRs will guide the controller around
deadends that would trap its heuristic default behavior. Even if the planner does not
have time to develop a complete plan, it still may have figured out how to avoid some
early deadends. Thus, the partial plan is collected as SCRs and passed to the controller.
The quality of the partial plan depends on the heuristics used. The following function

implements this simplest executive using the planner and controller described in Section
4.2.

348 R. Levinson/Artificial Intelligence 76 (1995) 319-375

(defun plan-then-execute (invocation planning-~time-limit)
(let ((planning-record
(Plan! :invocation invocation
:time-limit planning-time-limit)))
(Execute! :invocation invocation
:scrs (collect-scrs planning-record))))

The plan-then-execute executive accepts a PROPEL procedure invocation and a plan-
ning time limit. It calls the planner, Plan!, which searches until the time limit expires
and then returns its search record. The executive then calls the controller, Execute!,
passing in the SCRs that were collected from the planner’s search record. This exec-
utive is very simple, but it worked well for our example application, as shown in the
experiment results section.

4.3.2. Interleaved planning and execution

This second executive illustrates an interleaved planning and execution approach.
With this approach, the agent begins executing before any planning is performed. When
the agent gets trapped in a deadend, the executive calls the planner with a short time
limit to generate an escape route.

This example illustrates how we exploit the unified planner and controller to handle
execution failures. When an obstacle causes the move procedure’s preconditions to fail,
the controller terminates and returns its search record to the executive. The controller’s
search record is then passed to the planner, providing a history of choice points that were
encountered during execution. The planner backtracks through the search tree that was
originally generated by the controller, and then it generates new SCRs. After planning,
the controller resumes execution with its original search record, but using the new SCRs.
A simple interleaving executive that uses the same planner and controller as the one-shot
executive is shown below.

(defun plan-on-demand (invocation)
(let ((execution-record (Execute! :invocation invocation))
impasse-record scrs)
(loop until (success-nodes execution-record)
do (setq impasse-record
(make-impasse-record execution-record))
(Plan! :search-record impasse-record)
(setq scrs (collect-scrs impasse-record))
(physically-backtrack execution-record scrs)
(Execute! :search-record execution-record
:scrs scrs))))

The plan-on-demand executive accepts a procedure invocation as an argument. It begins
by immediately calling the controller, Execute!, to execute the procedure. When the
controller terminates, it passes the search record back to the executive. If the search
record has no success node, then a failure must have occurred. To plan an escape, the
executive makes a copy of the execution record, called the impasse-record, for use

R. Levinson/Artificial Intelligence 76 (1995) 319-375 349

by the planner. The choices that were not selected by the controller are resurrected as
potential backtracking nodes by moving them from the closed nodes list to the open
nodes list of the impasse-record. The executive then passes the copied record to the
planner. In this example, the impasse-record that is passed to the planner is assigned
a short deadline so that the planner does not plan all the way to a solution. Instead, it
plans for a few seconds and then returns control to the executive. The executive then
collects the SCRs from the short planning process. The executive must then physically
backtrack to a cell where the new SCRs provide coverage before resuming execution.
The physical backtracking is accomplished by calling the one-shot plan-then-execute
executive described in the previous section. After physically backtracking, the executive
resumes execution by re-invoking the controller using the same search record with which
it started. This time however, the controller uses the new SCRs to guide its decisions, and
it starts with a node associated with the agent’s location after physically backtracking.
We have run some experiments with both the one-shot and the interleaved executives,
and the results are presented in the Section 5.

4.3.3. Domain-independent executive functions

Although executives must perform many functions that are application-specific, some
common functionality is required regardless of the application domain. Most executives
must perform the following self-regulating functions: (1) decide how much time to
spend planning, (2) inhibit irrelevant, ineffective, or interfering reactions, and (3) detect
and correct errors that occur during plan execution. Our approach to these domain-
independent executive functions is briefly described below.

In order to meet real-time deadlines, we are developing a method for deciding when to
start executing an incomplete plan. Each procedure will be associated with an estimated
execution duration based on prior experience. The executive uses the duration estimates
to determine how much time must be set aside for execution. Any available time
beyond the expected execution duration can be used by the planner. As plans evolve,
the execution duration estimates will become more accurate. Thus, the executive will
use evolving plans to update its execution duration estimates.

The need to achieve real-time deadlines may force a system to be very reactive.
However, it could also be too reactive. Counteracting this reactive tendency is the need
to inhibit irrelevant, ineffective, or interfering reactions. An executive must maintain
this balance between reactive and predictive behavior. These executive functions are
based on neuropsychological theories of human frontal lobe function, and are described
further in [26,27]. The ability to replace inappropriate default reactions with deliberate
plans provides the flexibility required for humans (and machines) to operate in novel
situations.

In order to detect and correct execution errors, the executive requires a mechanism for
incorporating asynchronous sensor reports into the planning process. To achieve this, we
are developing a technique called dynamic dependencies. The executive will use depen-
dencies to identify plan assumptions, and then it will monitor the external status of those
assumptions. If an important plan assumption becomes false, the planner-best-nodes
function will re-evaluate its selections to prefer nodes that rely on valid assumptions. The

350 R. Levinson/Artificial Intelligence 76 (1995) 319-375

most difficult issue is performing dependency analysis on our procedurally expressive
action representation. Our basic approach is to combine Kambhampati and Hendler’s
work on plan modification [22] with Zabih et al’s work on dependency analysis for
general programming constructs {39].

We are also interested in another style of executive called a program patcher. An
autonomous system must function intelligently even when faced with a gap (i.e. a
choice point) in its control program. At choice points, more details must be selected
before a fully-specified command can be executed by the controller. In such cases it
is necessary to synthesize a control program patch by combining lower-level control
options at run time. With this executive, the planner is called whenever the controller
hits a choice point. This differs from the interleaved planning executive described above
because that executive requires an execution failure to occur before planning is triggered.
Here, the planner is called before the controller makes a default choice. In other words,
the planner is called preemptively as an error handler before the controller takes a
potentially harmful action. This is similar to the way Soar uses impasses to trigger
planning [25].

S. Experiment results

We have performed two experiments aimed at testing our hypothesis that planning can
extend the operating range of a real-time controller. A full empirical study of the tradeoffs
between between search and pre-programming, and the tradeoffs between alternative
executive models is beyond the scope of this paper. Thus, the experiments are intended
primarily to illustrate PROPEL’s behavior and performance. Both experiments are based
on the pickup-and-delivery example used throughout this paper. The experiments require
the agent to deliver the tile as fast as possible in five problems of increasing difficuity.
The five problems faced by our agent in both of the experiments are shown in Figs. 8
and 9.

Problem 1 is the routine situation for which the controller was designed. There are no
obstacles so the agent can follow its heuristic default behavior to pick up and deliver the
tile. This default behavior is indicated by the numbered steps in the figure for problem
I. That default path shows how the controller’s heuristics prefer to move in directions
that minimize Manhattan distances. When the agent must move both horizontally and
vertically, the horizontal movements are selected first by the heuristic. In the remaining
problems, the agent will encounter increasingly large obstacles that block movement
along the default path.

As described so far, the agent’s procedures do not allow it to get around any obstacles
without planning. In other words, only problem 1 is within the operating range of the
controller, and the agent will simply get stuck in deadends in problems 2-5. However,
PROPEL’s expressiveness allows us to represent reactive behavior, so we have added
two new procedures, called move-around-obstacle and carry-around-obstacle.
These procedures allow the agent to move around obstacles, escaping deadends by
following a wall without using search. This reactive approach allows the controller to
operate in situations with obstacles, but the resulting behavior involves a lot of physical

R. Levinson/Artificial Intelligence 76 (1995) 319-375 351

backtracking and is thus inefficient. The agent can use SCR plan advice when available,
but without SCRs it can escape from deadends by reactively following walls. The reactive
procedures for moving around obstacles are listed in Appendix B.

We want only the controller to use the wall-following procedures. For the planner, the
obstacles should trigger computational backtracking rather than the physical backtracking
produced by wall-following. So adding the reactive behavior makes it necessary to
modify the planner-best-nodes function so that it never selects the wall-following
procedures.

The plots in Fig. 10 show how long it takes the planner and the wall-following
controller to solve each of the five problems independently. The vertical axis is elapsed
real time in seconds, and the horizontal axis represents the problem numbers. The plot
on the left shows how long the planner takes to generate a complete plan for each
problem. The plot on the right shows how long it takes for the controller to physically
pick up and deliver the tile using its reactive wall-following procedure alone, without
any planning. Problem 5 is unsolvable by the pre-programmed wall-following controller
because it gets caught in a loop due to a problem of limited look ahead. This is discussed
further in the next section.

11 s{sdsisofadadar® T L]
| S 46
[HE 57 4o |

i s 41

=

lalals

clzlzlslz
1
|
T
—

S
s
D

T3
INENNE

_[_I ﬁ
En" 8
TV T
LI TTT
INEEE
T
1
8
]
1
IEREBEI
I 1T
T
R
T
1
T IT

14

|
I
]
]
T

N

TTTT1T
INE R
TTTTTT
T
1T
TTTT

|

1

]
NN

1 t

1

T

i

u]
1

T T
ITTiT

AT
EERE 3

?H

%

Fig. 9. Problems 3. 4 and

N

352 R. Levinson/Artificial Intelligence 76 (1995) 319-375

Planner Only Controller Only
17 T T T 80 T T T
16 b 78 h
16 b
z IS} 4 L 4
§ § 74
T 4t o 2 r b
E E 70t]
= 13 F =
o0 g 68 | b
= -
E 12t 5 66 T
=1 Q9
o v
= 1t g or]
62 b
10 Planner Only -—o— B 60 Controlier Only —e— 4
9 L L L 58 ") L
l 2 3 4 S 1 2 3 4 5
Problem Number Problem Number

Fig. 10. Problem difficulty for the planner and controller.

Problem 1 Problem 2
70 + /44\/
68 F 4
% 7
266t %/ { 2
£ / g
o 64 Pl B o]
| / 3
£ 621 // 1 e
60 :/ One-shot Executive E One-shot Executive —e—
L 73 S S S T S W S S R S P L S S S S S S S S S S R R
0 4 6 8 1012 14 16 18 20 22 24 26 28 30 0 2 4 6 8 101214 1618 20 22 24 26 28 30
Planning Time (secs) Planning Time (secs)
Fig. 11. Total time versus planning time (problems 1 and 2).

5.1. Experiment |

This first experiment measures the total time taken by the agent to plan and execute
the tile delivery. Thus, total time = planning time + execution time. Our hypothesis is
that total time will decrease as planning time increases. For each problem, the total time
was measured while varying the planning time from O to 30 seconds in increments of 2
seconds.

In this experiment, the agent uses the one-shot plan-then-execute executive de-
scribed in Section 4.3.1. With that executive, the agent plans for some initial period of
time. Then, when planning time runs out, SCRs are collected for the current best node,
and passed to the controller. The controller then begins execution using those SCRs as
choice point advice. When the controller runs out of SCRs, it completes execution by
falling back on its pre-programmed behavior which uses wall-following procedures to
escape from deadends.

Fig. 11 shows the results for problems 1 and 2. Problem 1 is simple enough that
planning time only degrades the controller’s performance. The total time flattens out at
around 18 seconds of planning time because a complete plan is always found by that

R. Levinson/Artificial Intelligence 76 (1995) 319-375 353

Problem 3
78 T T T T T T T T T T T T T T
7 + /\”“
74 + /

Total Time (secs)
~J
ro
~
<
s

\]
| #

68 \ / 4
| One-shot Executive ——

66

0 2 4 6 8 10121416 18202224 26 28 30
Planning Time (secs)

el

Fig. 12. Total time versus planning time (problem 3).

Problem 4

Problem 5
Fﬁfy—rf.—ra—w—rf.fr —— T T T T T 77
80 1 80 r
/‘ / A
\
’F) 4 78 F
= | 4 >
g1 / g
2 76 | R 2 76+
E 74 \\ / : 74
= r 1 =
| /\‘/ =
g 72 L/)\\ / g 72
g n| \ 1 & nt
. \ /
\ A
70 ¢ \\ Vand 4 70 +
% One-shot Executive —— One-shot Executive ——
P P T S S S S S T 68 PR S SR N SR U S ST S S U

0 2 4 6 8 1012141618 202224262830

0 2 4 6 8 101214161820 2224 26 28 30
Planning Time (secs)

Planning Time (secs)

Fig. 3. Total time versus planning time (problems 4 and 5).

time. This causes the planner to terminate well in advance of its 30 second deadline.
Problem 2 is only a little harder due to some small obstacles that do not take the
wall-follower long to get around.

Fig. 12 shows that the planner starts to provide some value on problem 3. The
deadends are large enough that without any planning the controller requires 13 seconds
longer than when no obstacles were present. After 4 seconds of planning, the planner
advises the controller how to avoid the first deadend. This reduced the required execution
time by 9 seconds, yielding a net savings of 5 seconds of total time. Any more planning
only increases total time compared to that optimal point.

Fig. 13 shows the results for problems 4 and 5. In problem 4, the agent’s default
path through the center cell is completely blocked. After four seconds of planning,
the planner can advise the controller around the obstacle inside the first room. Eight
seconds of planning reduces the execution time by 18 seconds. Thus, 8 seconds of
planning yields a 10 second net savings in total time over the time required by the
controller alone. Using only a partial plan, the agent takes less total time than if it had
constructed a complete plan or if it had done no planning at all.

354 R. Levinson/Artificial Intelligence 76 (1995) 319-375

In problem 3, the deadend trap in the center is large enough that without any plan-
ning, the controller cannot solve the problem. Thus there are no data points until the
planner uses about 8 seconds to plan around the deadend trap. The size of the dead-
end in problem 5 causes the wall-following procedure to get stuck in a loop since
it relies only on one-step look-ahead to determine when it is out of the trap. This
happens as follows: The agent is trying to move east into the cell at (13 11), but
it is blocked. It then follows the left wall until it can move in the blocked direction
(east) unless moving east would undo one of the detour steps. This worked well in
the first four problems. However, in problem 5, the detour loop is large enough that
the agent can move east without undoing a detour step while it is still trapped. If the
reactive procedure looked ahead two steps, it would realize it had not escaped the dead-
end yet. This is a good illustration of how finite programmer effort and foresight can
limit the operating range of a pre-programmed reactive controller. However, any reac-
tive procedure must have limited look-ahead in order to meet real-time constraints. See
the wall-following procedures in Appendix B for the details of the limited look-ahead
behavior.

5.2. Experiment 2

Our goal for this second experiment was to compare the performances of the in-
terleaved planning executive, the one-shot planning executive and the pre-programmed
wall-following controller. Since a full study of the tradeoffs between the different con-
trollers is beyond the scope of this paper, this experiment, like the first one, is intended
primarily to illustrate the behavior of the three controllers presented in this paper.

When using the interleaved planning executive described in Section 4.3.2, we remove
the wall-following procedures from the agent’s procedure library. Thus, whenever the
agent runs into an obstacle, an execution failure occurs, and the planner is called
instead of immediately following a wall. With the interleaved executive, every time
the controller ran into an obstacle, the planner was called for 5 seconds. The one-shot
planning executive was allotted 10 seconds of planning time for each problem. Each
executive would perform differently if we varied its allotted planning time.

Fig. 14 compares the performances of the one-shot planning executive, the interleaved
planning executive and the pre-programmed wall-following controller. The figure shows
that the one-shot executive did the best on average, maintaining a steady performance
of approximately 66 seconds (total time). We also see that the wall-following controller
outperformed the interleaved executive on problems 2-4, but it could not solve problem
5 at all. The interleaved executive’s inefficiency is due to its physical backtracking.
The agent must backtrack to a cell for which the planner generated SCRs, but due to
our heuristics, SCRs will only be generated for plans that move directly toward the
goal. Thus, the agent sometimes physically backtracks further with this executive than
it does with the controller’s wall-following routine. There is also a certain amount of
overhead associated with swapping between planning and control, which adds to the
inefficiency of the interleaved executive. However, the interleaved executive still extends
the controller’s operating range because it can get the controller through problem 5,
which the wall-following program could not solve at all.

R. Levinson/Artificial Intelligence 76 (1995) 319-375 355
86 T . -
T
82 + . -
80 | L
78 a
= Tor 7 i
g Mt)
g ny .]
= 70+ g |
T et]
T S S |
[
64 + |
62 r g 4 One-shot Planning Executive -— 1
60 Interleaved Planning Executive -+ |
2 Controller Only -&---
S8 g |
56 . . ,

[

4

3
Problem Number

Fig. 14. Comparison of one-shot. interleaved. and no planning.

One advantage of the interleaved approach is that it uses only as much planning
time as necessary. The interleaved executive never called the planner for problem 1,
called the planner twice for problem 2, and called it three times for problems 4 and 5.
Consequently, the interleaved executive outperformed the one-shot executive on problem
1. It also outperformed the wall-following controller for problem 1 because it never called
the planner and it did not spend time testing the preconditions of the wall-following
procedures.

5.3. Analysis

The above experiments support our hypothesis that planning can extend the operating
range of a pre-programmed controller. By pruning pre-programmed (default) actions
that led to deadends, planning allowed the controller to operate more effectively in
situations that trapped the limited look-ahead of the reactive controller. In some cases,
the sum of the planning time plus execution time was less than the time that was spent
executing with no planning. This has been noted by McDermott as an important property
for integrated planning and control systems [32].

While the experiments show that increased planning time can yield a decrease in total
time, they also show that too much planning can increase the total time. This could
effectively narrow the controller’s operating range; an effect we’d like to avoid. Thus
a good executive will need a fine understanding of just how much planning time is
optimal.

The profiles of our agent's performance shown in Figs. 11-14 are particular to our
application. The exact shape of the plots depends on interactions between the controller’s
default behavior, the planner’s search heuristics, and the distribution of local minima
(deadends) within the search space. Therefore we cannot make any general claims that
all PROPEL applications will perform like ours. The above experiments were designed
primarily to illustrate PROPEL’s behavior for this paper. However, PROPEL’s procedural

356 R. Levinson/ Artificial Intelligence 76 (1995) 319-375

expressiveness, the interruptability of its planner, and its unification with the controller
are general-purpose tools that were designed for exploring and evaluating more general
theories.

6. Related work

PROPEL is related to a variety of previous research which can be roughly classified
as procedural search and situated planning systems. In this section, we compare our
system to examples from each of these categories.

6.1. Procedural search

The core of our system is the procedural search engine that generates a search space
for a set of nondeterministic LISP-like procedures. The most related system to our proce-
dural search engine is Siskin and McAllester’s Screamer system [37], which is a dialect
of LISP. Screamer includes nondeterministic assignment statements like choose-value,
but there is no choose-procedure functionality. Screamer, a descendant of Chapman’s
Dependency-Directed LISP {7,39], is very similar to our core, the procedural search
engine. However, a major difference is PROPEL’s use of heuristic search compared to
Screamer’s reliance on chronological backtracking. Also, their system has no special
facilities designed to support situated planning like the integration of PROPEL’s inter-
ruptable planner, real-time controller and SCRs. Another difference is that Screamer is
a true extension of LISP and is compilable, while PROPEL is an extension to a subset
of LISP, and it is interpreted.

Another similar system that performs search with general program procedures is
McDermott’s Reactive Plan Language (RPL) [1,31,32]. RPL is a descendant of Firby’s
RAPs system [15], which is primarily a language for writing reactive programs that
can physically react to unexpected events and situations without using predictive search.
RPL provides many reactive control constructs that are not present in PROPEL, but
RPL programs are deterministic because they do not explicitly model choice points
for selecting subroutines and variable bindings. The RPL projector generates alternative
timelines, but it is not really a planner since it does not modify any action representation.
However, the RPL projector is part of a situated transformational planning system called
XFRM {32} which is discussed further in the section on related situated planners.

The Procedural Reasoning System (PRS) [17], like PROPEL, was motivated by the
desire to represent complex procedures rather than procedurally inexpressive STRIPS-like
actions. However, PRS’ action representation requires that all behavior be encoded as
graphical networks of condition-action rules. Thus, PRS does not allow control system
programmers to use familiar programming constructs for iterative and conditional control
or local variable assignment. Additionally, using our definitions of planning as predictive
search and execution as pre-programmed control, PRS is strictly an executor—not a
planner [21]. PRS always executes its procedures, and thus is a purely reactive system.
PRS has no special facilities for searching and backtracking through a space of procedure
simulations. It also has nothing like our SCRs for integrating predictive search with

R. Levinson/Artificial Intelligence 76 (1995) 319-375 357

real-time control. Other reactive systems like GAPPS [21] also fit this description.
These systems are pre-programmed real-time controllers that focus on providing nearly
instantaneous action responses for any given sensory state.

PROPEL’s heuristic search through a space of procedure instances is similar to the
method of “skeletal plan instantiation” used by Friedland’s MOLGEN system [16], with
our procedures corresponding to MOLGEN’s skeletal plans. Although our representation
is more procedurally expressive, both systems encode partially specified procedures. In
contrast with MOLGEN, our system performs closed-loop control by actually executing
the procedures it selects. One assumption shared by both MOLGEN and PROPEL is that
you do not need to plan from scratch because procedure schemas can be designed in
advance. This is also similar to a key assumption behind the Case-Based Reasoning
work of Hammond [18].

Wilkins’ SIPE system [38] is well known as a practical planner; a quality we would
like to achieve. SIPE is able to search through procedures in the sense of many other
hierarchical, non-linear planners such as O-plan [8] and HTN [22]. These systems
decompose high-level operators into more primitive ones by using a form of backward
chaining [33]. Although these systems capture notions of procedural decomposition
and modularity, they typically rely on unconventional, highly-specialized action repre-
sentations that make it difficult to represent arbitrarily complex actions. Additionally, the
planner’s language is typically different from the general-purpose programming language
used to implement the real-time controller. This language barrier between the planner
and the controller has traditionally made it difficult to replan after execution failures.
Additionally, the backward chaining nature of these systems has made it difficult to
achieve anytime interruptability properties.

Finally, we should mention that the basic idea of combining search with a general
programming language is addressed by PROLOG [6]. PROLOG is a general programming
language designed to perform search. However, the syntax is still very unconventional
because it is foreign to most control system programmers. Although most procedural
constructs can be built out of PROLOG’s backward chaining mechanism, it is not as
straightforward as a conventional language. PROPEL also differs from PROLOG in its
support for situated planning (i.e. incremental search while connected to sensors and
effectors). In contrast with PROLOG, PROPEL was specifically designed to provide
integrated planning and control using SCRs. We can also contrast PROPEL’s heuristic
search facilities with PROLOG’s tendency toward chronological backtracking strategies.

6.2. Situated planning

The relation between the planning and control components in PROPEL is modeled after
the Entropy Reduction Engine (ERE) [4, 12]. We chose the ERE approach because it
has the benefit that the controller operates independently from the planner so that real-
time control is not dependent on the more expensive search behavior of the planner.
Both PROPEL and ERE use a planner that passes Situated Control Rules (SCRs) [11]
as advice to an independent controller. Using SCRs, both systems can guarantee that the
controller selects actions in bounded time since it is not dependent on the search process.
ERE and PROPEL differ primarily in their action representations and their search spaces.

358 R. Levinson/Artificial Intelligence 76 (1995) 319-375

In particular, PROPEL uses procedures and searches through a space of computational
continuations, while ERE uses a more traditional state-space search approach. Also, the
PROPEL planner serves the roles of both the reductor and projector components in the
ERE system. Although both systems use SCRs, the rules themselves are different due to
the different search spaces. The left-hand side of PROPEL’s SCRs refer to control stacks,
while ERE’s SCRs refer to state-space conditions.

McDermott’s XFRM system [31,32] is similar to PROPEL in its ability to plan with
an action representation that is procedurally expressive enough to be used as a real-time
control programming language. XFRM uses RPL (described above) to represent behavior.
In XFRM, RPL procedures can be simulated by a projector and then modified by a
planner before being physically executed by a real-time controller. Like PROPEL, XFRM
represents a unified planning and control architecture because the same RPL interpreter
is used by both the planner and the controller. However, XFRM and PROPEL represent
complementary approaches to unified planning and control. PROPEL’s controller was
designed to use the planner’s procedure interpreter, while XFRM’s planner was designed
to use the controller’s procedure interpreter. Thus XFRM and PROPEL started at opposite
ends of the predictive/reactive spectrum, but are moving towards each other. Another
difference is that XFRM'’s planner searches through a space of program transformations,
while PROPEL’s planner searches through a space of computational continuations. Also,
XFRM'’s projector is not the same as it’s planner. The projector is a module that generates
timelines by simulating RPL procedures. The planner’s critics then evaluate the timelines
and fix bugs by transforming the plan. In PROPEL however, planning and projecting are
basically the same node scheduling process. Another distinction is PROPEL’s direct
support for interruptable planning, contrasted with XFRM, which does not provide plan
results until the plan has been completely projected.

As described in the introduction, Dean and Boddy’s work on anytime planning algo-
rithms [2,9] forms a theoretical framework for evaluating and using anytime algorithms.
They describe the basic properties of anytime algorithms, and focus on the use of per-
formance profiles to perform deliberation scheduling. The graphs shown for experiment
1 are very similar to Dean and Boddy’s performance profiles in [2]. We contrast their
focus on decision theoretic deliberation scheduling [2] with our own focus on the
development of a procedurally expressive search engine. PROPEL’s expressive, nonde-
terministic, and interruptable procedures may allow many new behaviors to be encoded
as anytime algorithms.

Bresina has reported on related work in [3] that combines problem reduction with
an SCR-based controller. That work describes an impasse-triggered planner that is very
similar to the interleaved planning executive described in Section 4.3.2. The focus of
that work involves finding a minimal set of SCRs that guide the reactor around crit-
ical choice points only. The SCRs can also be used by a learning component that
modifies the problem reduction rules to avoid future impasses. We contrast that fo-
cus with our own focus on integrating predictive search into a general programming
language.

Laird and Rosenbloom’s Robo-Soar [25] also contains an impassed-triggered planner.
Their architecture consists of a production system that is connected to sensors and
effectors. When more than one production rule matches the given sensory state, the

R. Levinson/Ariificial Intelligence 76 (1995) 319-375 359

agent is said to have reached an impasse. In routine situations, a unique production rule
is found that instructs the controller to take a unique action. In non-routine situations
however, multiple enabled production rules provide a choice of possible actions. This
is similar to our notion of a choice point. Soar attempts to solve an impasse as a
“subgoal” by triggering a recursive call to the production system. When a subgoal
is solved, they use a technique called chunking to modify the production rule set so
that a unique production rule will match the same situation next time, so that an
impasse will not occur. A major difference between PROPEL and Soar is our use of a
general programming language to encode behavior in contrast with Soar’s production
rule representation. We believe that our expressiveness will allow us to represent more
complex control programs. However, Soar’s ability to learn generalized production rules
may be an advantage over the matching cost incurred by PROPEL’s use of specific
SCRs.

Lyons and Hendriks [29] describe an architecture that is also based on a model where
an incremental planner provides advice to an associated real-time controller. They have
focused on developing a formal theory about how the planner can incrementally modify
the controller’s behavior towards some theoretical ideal behavior. As with Soar, a major
difference between their system and PROPEL is the action representation. Since they
have a theoretical emphasis, they use a representation that does not encode control
behavior using standard programming constructs for iterative and complex conditional
control, variable assignment and procedural decomposition.

We can also compare PROPEL’s integrated planning and control approach with a
system that combines the SIPE planning system [38] with the PRS control system
[17]. In this combined system [38], the SIPE planner produces PRS procedures that
are used by the controller. Although the planner produces PRS code, it uses SIPE’s
action representation and SIPE’s action interpreter during the planning process. In other
words, the planner and the controller use diftferent languages to encode behavior. Thus
this approach does not represent a unified approach to planning and control. PROPEL’s
unified approach facilitates smoother transitions from the controller to the planner in the
face of execution failures because the execution program control stack can be processed
by the planner to evaluate error recovery options.

Saffiotti et al. present “A multivalued logic approach to integrating planning and con-
trol” elsewhere in this same journal issue [36]. They show how multivalued logic can
be used to define behavior schemas that are similar to potential field and fuzzy-rule
controllers. They present formal theorems and proofs for blending together independent
behavior schemas based on desirability functions that assign a numeric value to each
potential action from a given state. They show how the behavior schemas can be inte-
grated with both PRS-style deliberation and goal-regression style “pre-planning”. They
view plans as a collection of reactions, however, rather than as a behavior sequence such
as a PROPEL procedure. They do not specifically discuss the use of run time predictive
search which is at the core of PROPEL. It may actually be possible to incorporate some of
their features into PROPEL by viewing their desirability functions as a formal definition
for PROPEL’s local heuristics. The goal patterns in our choose-procedure statements
would correspond to the names of their behavior schemas, and our local choice point
heuristics would be like their desirability functions. This may allow PROPEL’s global

360 R. Levinson/Artificial Intelligence 76 (1995) 319-375

heuristic function to use their theorems for blending the local choice point heuristics. It
would be interesting to pursue such a blend of these two approaches.

7. Qualitative evaluation

In this section we evaluate PROPEL in terms of its assumptions, limitations, and
contributions. We begin by discussing the assumptions that affect PROPEL’s utility for
any given application, and then we discuss PROPEL’s current limitations, suggesting
directions for future work. We close by summarizing PROPEL’s original contributions.

7.1. Assumptions

PROPEL’s utility in any given application relies on some assumptions about that ap-
plication which we will now describe. First, we assume that the control system designer
can supply the various forms of application-specific knowledge that are summarized
below.

Procedures and choice points

The control system designer must specify a set of application-specific procedures
that define the controller’s behavior. This is required even for entirely pre-programmed
controllers. In a PROPEL application however, they must also specify a set of choice
points within those control procedures. The ability to enumerate choices in advance is
an assumption that is present in all planning systems since they all enumerate their
operators. The difference for PROPEL is that the choices are embedded within a general
programming language.

Our approach assumes that procedures don’t need to be entirely synthesized from
scratch, but they cannot be completely pre-programmed either. This is a reasonable
assumption because the existence of many pre-programmed controllers represent a vast
pool of control procedures. The boundaries of their operating ranges represent program
gaps that could be instantiated at run time by a planner. A simple approach to identifying
potential choice points in a standard control program is to identify its error conditions.
Thus we feel that all control programs can be viewed as plan schemas that are not fully
instantiated for unusual conditions.

Heuristic and termination functions

The designer must provide application-specific definitions for the best-nodes and
terminate? functions. The global heuristic knowledge encoded within best-nodes is
used to control the planner’s search process, and also to provide default choice point
advice for the controller. Optionally, the designer can associate a local heuristic function
with each choice point. We believe that the ability to provide heuristics is a reason-
able assumption because heuristics have been widely available and successfully used
for many expert system applications, and they were trivial for our example applica-
tion.

R. Levinson/Artificial Intelligence 76 (1995) 319-375 361

Action simulations

To prevent the planner from effecting changes in the environment, the designer must
supply an application-specific method for simulating the effects of physical effector
commands. In our example, we have shown a very simple STRIPS-based approach to-
ward simulation. However, the designer can use any simulation technique they wish.
Most planning systems hold the assumption that effector commands can be simu-
lated. This assumption should not be any less valid for PROPEL which can simulate
complex procedures using general programming constructs. Only the low-level proce-
dures that execute effector commands require simulation descriptions. For our Tileworld
example, only the move, carry and grasp procedures required simulation descrip-
tions.

Executive models

To achieve closed-loop planning and control, the designer must develop an application-
specific executive. Alternative executive models may depend on issues such as the cost
and feasibility of physical backtracking and the severity of deadlines. Several executive
models were described in Section 4.3.

Other assumptions

In addition to the above forms of application-specific knowledge, we assume that the
designer will provide an application-specific set of sensors and effectors, and a sensor
interpretation component that converts the sensory input into whatever form is required
by the control procedures. We also assume that a useful amount of planning time is
available. This is reasonable for many applications where required response times range
from seconds to hours. In order for our planner to be truly anytime, we assume that the
quality of the planner’s partial plans will increase as planning time increases. All of these
assumptions held for our Tileworld example, and we believe many other applications
have these properties, including our NASA application. Currently, we also assume that
the external world remains static during the search process, and that the agent has global
perception. These two assumptions generally do not hold in real-world applications, so
we will address them again in the section on current limitations and future work.

7.2. Limitations and future work

In this section, we discuss some of the current limitations of PROPEL which suggest
directions for future work.

Reactivity issues

To truly be reactive, both the planner and controller must be able to operate in a
dynamic world with limited sensing. In particular, two major issues that must be ad-
dressed are exogenous events and variant outcomes. Exogenous events are environmental
changes, like destructive winds, that originate outside of the controller. Variant outcomes
occur when the effects of a single action cannot be uniquely defined because of mechan-
ical errors such as wheels that drift or a slippery gripper. Since we have yet to tackle

362 R. Levinson/Arttficial Intelligence 76 (1995) 319-375

these issues, they remain as critical obstacles toward our goal of fully unified planning
and control.

We will first discuss our approach toward extending the planner to operate in a dy-
namic world with limited sensing. Variant action outcomes could be modeled by PROPEL
through the use of simulation descriptions that include choice points. Thus, the simula-
tion would split into alternative continuations that correspond to variant action outcomes
such as moving straight or veering left. We just need to recognize that the controller can-
not actually select a particular outcome, so no SCRs would be created for those choice
points. Exogenous events could be modeled by PROPEL using concurrent procedures.
For example, an asynchronous exogenous event such as wind can be simulated by a
concurrent procedure that models the effects of a periodic wind. In either case, variant
outcomes or exogenous events, the planner could project high probability contingencies.
The planner would then produce SCRs to advise the controller about choices that are
contingent on exogenous events or variant outcomes, Thus, the controller would react to
the cvents using the contingency SCRs in a manner similar to the Traverse and Robustify
technique of Drummond and Bresina [12].

It is currently possible to write a PROPEL procedure that updates its sensors during
planning by explicitly reading the sensors. This provides a method for planning in a
changing world, but it requires the programmer to anticipate and pre-program explicit
sensor update instructions. We are therefore working on a more general solution. As
discussed in Section 4.3.3, are developing a method called dynamic dependencies that
will allow the planner to incorporate asynchronous sensor reports into its search process,
and to replan when significant changes in the external world are detected. Another issue
for reactive systems is that of limited sensing. Although we think PROPEL can be
extended to remove our current assumption of global sensing, we have not pursued this
issue very far. The basic approach is to limit the search horizon to correspond with the
perceptual horizon. We also hopc to explore the issue of planning to gain information
by implementing our NASA application’s sensor interpretor component in PROPEL.

We now discuss how the controller could be extended to operate in a dynamic
world. First, we believe that standard feedback algorithms that are used to make existing
controllers reactive could be encoded in PROPEL. However, rather than placing the entire
burden on the programmer, PROPEL could provide some additional support. This area
is where McDermott’s RPL is stronger than PROPEL. RPL [32] provides many ways to
pre-program contingency control behavior, without planning. For instance, RPL’s “with-
policy”™ construct provides the ability to say “maintain condition ¢ while performing
procedure p”. This instructs the controller that if condition ¢ ever becomes false while
performing procedure p, it should interrupt procedure p and re-establish condition ¢. For
example, if the agent drops the tile while moving across the hall, it would immediately
stop moving, pick up the dropped tile, and then continue moving. With a bit of work,
we could provide a similar mechanism that would push a recovery procedure onto the
control stack when a protected condition is violated. We could label some preconditions
as “protected”, and the controller could then react to protected condition violations using
a form of an “interrupt handler”. If a protected precondition then becomes false while
executing the procedure, a recovery procedure would be pushed onto the control stack.
When the recovery procedure reestablished the protected condition, it would be popped

R. Levinson/Arnficial Intelligence 76 (1995) 319-375 363

oft the control stack, and the original procedure could be resumed. However, if the
recovery procedure changed the world in any significant way, the agent would need to
physically backtrack to a resumption point.

As described earlier, we also need to develop a method for estimating evolving plan
durations that can be used by an executive to determine when to stop planning and start
execution. We have only done preliminary work on this but it is essential for developing
an executive that meets deadlines.

Backtracking issues

The most immediate problem we experienced while developing our example applica-
tion was related to backtracking. Backtracking in PROPEL is controlled by the heuristic
node scheduling function best-nodes. When a node in the current expansion beam
fails, or is no longer among the “best”, it will be replaced by the next best node. In our
example, the local heuristics partition the choices into two classes: those that decrease
Manhattan distance by moving the agent toward a local goal (e.g., a door), and those
that increase Manhattan distance by moving the agent away from the local goal. We
call the first class, the reaction space because the controller will reactively always move
toward the goal (unless it is following a wall). The planner-best-nodes function
always searches the reaction space first.

All of the example problems presented in this paper contained a solution within
this reaction space. However, when no solution is found in the reaction space, then
backtracking becomes quite inefficient. Since the reaction space is not partitioned by
subproblems, the planner will backtrack through the entire reaction space before trying
a solution where it must temporarily increase the Manhattan distance to the goal. For
instance, if the agent gets trapped at the very end of the delivery, the planner will
backtrack through the entire reaction space which includes rethinking the very first steps
toward picking up the tile. In such cases, we would like to modify the search bias so that
it stays within the reaction space only for the current subproblem (i.e., the procedure
currently on the top of the control stack). Since the backtracking in PROPEL is controlled
by application-specific heuristics, a large part of the solution may be application-specific.
Bresina has described a learning approach to this problem in [3].

Other interesting options for addressing our backtracking limitations include
dependency-directed backtracking, and using critics as a form of heuristic backtracking.
In plan transformation systems such as XFRM, a critic is often used to identify “bugs”
in the plan. Although it is beyond the scope of our current work, similar critics could
be implemented in PROPEL as a form of global heuristic that would identify relevant
backtracking points. The planner-best-nodes function could look at paths in the
search tree and determine that the best plan so far has a bug in it due to a choice made
in the middle of the path. Functioning like a “critic”, planner-best-nodes would then
backtrack to that choice point in order to fix the bug.

Abstract procedures

The final area for future work we will discuss is the category of abstract procedures.
We would like to annotate choice points with an “abstraction level” so that the planner
could develop a skeletal plan by instantiating high-level or “critical” choice points first.

364 R. Levinson/ Artificial Intelligence 76 (1995) 319-375

This would allow a time-constrained planner to focus on important choices first, leaving
lower-level details to be heuristically selected by the controller if planning time runs
out. This requires a technique for simulating high-level actions. In PROPEL, the user can
provide a simulation for any procedure - it does not have to be a “primitive action”.
However, many issues would need to be addressed to make this work. For instance,
how do you model the effects of going to a door without simulating the individual steps
toward the door? This issue is also discussed by McDermott in [32], although it is not
clear if XFRM provides any general theory for modeling abstract operators.

7.3. Contributions

We have shown how PROPEL’s planner can be used as a feedforward component to
extend a controller’s operating range using a general purpose programming language. A
tool that facilitates the use of planning techniques by control system programmers may
lead to wider use and evaluation of planning techniques for realistic applications. We
now summarize PROPEL’s primary contributions.

e a procedurally expressive search engine,

e a unified planning and control architecture,

e an interruptable planner for a general programming language,

e an tool for studying integrated planning and control.

A procedurally expressive search engine

PROPEL uses an expressive action representation that captures the procedural complex-
ities of practical control programs, yet can still be simulated by a search-based planner.
This provides three primary benefits. First, we can represent behavior for larger, more
complex control applications. This can increase the use and evaluation of Al planning
techniques by control system programmers. Second, the increased expressiveness allows
a single action representation to span the continuum from predictive to reactive systems.
This facilitates the study of tradeoffs between pre-programmed and search-based behav-
ior, and allows applications to be tuned along this continuum. Third, the expressiveness
makes it practical for the planner and controller to use the same language, which makes
it more practical to use the same interpreter for both planning and control. This in turn
facilitates the study and development of tightly integrated, closed-loop planning and
control systems.

A unified planning and control architecture

Our system provides unified planning and control because the planner and controller
use exactly the same action representation, data structures and procedure interpreter.
This facilitates smooth transitions back and forth between planning and execution.

The unified interpreter helps when switching from planning to control because SCRs
that describe the planner’s control stack can be applied to the controller’s control stack.
When the controller drops off the end of a plan (i.e., it runs out of SCRs), it continues
executing by using heuristic defaults without stopping. This transition from using planner
advice to using pre-programmed heuristic advice is transparent to the controller.

R. Levinson/Artificial Intelligence 76 (1995) 319-375 365

The unified architecture helps when switching from control to planning (for replan-
ning) because the planner can reason about the controller’s state and history in order
to recover from execution failures. The planner can evaluate error recovery options by
processing the controller’s control stack. This ability of the planner to reason about exe-
cution failures is troublesome when the planner and controller speak different languages
[19]. Of course there are limits to how the shared data structures can be used. For
instance, the controller must obey the laws of physics when recovering from a failure,
and must therefore backtrack physically rather than computationally like the planner.
Other systems that integrate planning and control must also respect these limits.

Another benefit of the unified representation is that designers spend less effort de-
veloping and maintaining separate planning and control programs. A single program is
required to encode most control procedures because only those that directly call effec-
tor commands require action simulations. For our Tileworld example, the same local
heuristics were used by both the planner and the controller. Also, the same best-nodes
function was used by the planner and the controller, except when the wall-following pro-
cedures were being used. The terminate? functions also differ only slightly between
planning and control.

An interruptable planner for a general programming language

To meet real-time constraints, the planner must be interruptable and able to provide
useful results at any time [2,9]. Although PROPEL’s planner is not inherently “anytime”,
it is inherently interruptable. PROPEL’s general programming constructs facilitate the
design of complex control procedures that can be interrupted at any time according to
either a time limit or an asynchronous halt message. The partial plans produced when
the planner is interrupted provide advice for the most immediate choice points that will
be faced by the controller. The degree to which the partial plans improve with planning
time is application-dependent, and relies on how the search control heuristics interact
with the environment.

A tool for studying integrated planning and control

There are many issues that need to be addressed before the fields of planning and
control are fully unified. We hope that PROPEL’s unified architecture can accelerate the
exploration of those issues using a procedurally expressive action representation. We
intend to use PROPEL to explore the continuum of points along the reactive/predictive
spectrum by studying the tradeoffs and tuning applications so that search is used only
where it is required. Using this platform, an experimenter can easily compare two
procedures that differ only where one uses a choice point and the other uses a pre-
programmed conditional. We also hope to use PROPEL to study how heuristics and the
environment affect the quality of partial plans produced by an interruptable planner.

PROPEL’s unified architecture also facilitates the development and evaluation of dif-
ferent executive models for closed-loop planning and control. We are currently using
PROPEL to implement a computer model of human frontal lobe function [26,27]. The
model is based on neuropsychological models of human executive functions that provide
the flexibility required to operate in novel situations. In this model, the default reactions

366 R. Levinson/ Arttficial Intelligence 76 (1995) 319-375

are used in routine operating conditions. The planner is used to detect novel conditions,
and to replace irrelevant, ineffective, and interfering reactions with deliberate plans.

8. Conclusion

Although modern control software has been very successful, it usually relies on the
ability to predict all operating conditions in advance. In cases where environmental
conditions and the effects of control actions cannot be entirely predicted at design time,
planning can serve as a feedforward control mechanism. Our hypothesis is that a planner
can extend the operating range of a real-time controller by generating novel behavior to
handle unusual situations.

To test that hypothesis, we have developed a general programming language that
permits predictive search techniques to be embedded within real-time control programs.
We have shown how this language, with its procedural search engine, provide a unified
architecture for tightly integrated planning and real-time control. The planner performs
look-ahead search on the procedures and advises the controller about which selections to
make at choice points. The planner’s advice facilitates a graceful degradation of the con-
troller’s performance when it encounters situations that were not fully pre-programmed
at design time. We have described how PROPEL provides benefits derived from a proce-
durally expressive action representation and a unified planning and control architecture.
We hope these features can be used to explore the many questions that remain about
the nature of integrated planning and control.

Acknowledgements

Many thanks to the members of the ERE group—Mark Drummond, John Bresina
and Keith Swanson for many useful discussions on the relation between planning and
control, and for their comments on early versions of this work. Special thanks to Keith
for listening to these ideas for a long time, and for providing essential advice about
how to present it coherently. Additionally, Id like to thank David Thompson and Peter
Robinson. my colleagues on the Intelligent Scientific Instrument project, for supporting
this effort and providing excellent feedback on previous drafts. Thanks to Peter Friedland
for providing a research environment that facilitated the development of this work.

Appendix A. The PROPEL grammar

(Defprocedure (name)((arg)+)
[:Goal {pattern}]
[:Preconditions {(cond)+]
:Body (expr)+
[:Simulation (expr)+])

(Defglobal (symbol) (lisp-term))

R. Levinson/Artificial Intelligence 76 (1995} 319-375 367

Expr — If | While ! Until | For + Assign * Choose-value | Subroutine-call |
Choose-procedure | Fail | Run-process | Wait-until | Sleep

If — (If {cond) Then (expr)+ [Else (expr)+])

Cond — (lisp-function) | {assign)

While — (While (cond) Do {expr)+)

Until — (Until {cond) Do {(expr}+)

For — (For (symbol) In {lisp-term) [When {cond)| {Do | Collect} {(expr)+)

Assign — ({var) — (expr))

Choose-value — ({var) < (Choose-value {lisp-term) [:heuristic (lisp-function}]))

Subroutine-call — (lisp-tunction) | (propel-procedure)

Choose-procedure — (Choose-procedure (pattern) [:heuristic (lisp-function)])

Run-process — (Run-process {(function-name) {arg)*)

Wait-until — (Wait-until {cond))

Sleep — (Sleep (seconds))

Fail — (Fail)

Propel-procedure — ({name) (arg)x)

Lisp-function — ({name) (arg)+)

Lisp-term — (lisp-function) | {symbol)

Pattern — ({symbol)+)

Name— (symbol}

Arg — {symbol)

Var — (symbol)

Function-name — (symbol)

Symbol — (lisp-symbol)

Notation.
{): non-terminal.
[]: optional,
{}: grouping,
+: one or more,
*. 7€ro or more,
|: disjunction.

Appendix B. The Tileworld application

(defglobal *statex (read-sensors))
(defglobal *rank* 1)

(defprocedure move-tile (tile destination)
:body
(pickup-tile tile)
(deliver-tile destination))

(defprocedure pickup-tile (tile)

368 R. Levinson/ Artificial Intelligence 76 (1995) 319-375

:body

(tile-loc <- (get-tile-loc tile *statex))

(go-to-room (what-room? tile-loc))

(go-next-to-cell tile-loc)

(grasp-tile (adjacent-direction (get-agent-loc *statex)
tile-loc)))

(defprocedure deliver-tile (destination)
:body
(go-to-room (what-room? destination))
(agent-dir <- (opposite-dir (get-grasp-dir *state*)))
(agent-destination <- (adjacent-cell destination agent-dir))
(go-to~cell agent-destination))

(defprocedure go-to-room (destination-room)
:body
(agent-room <- (what-room? (get-agent-loc *state*)))
(if (not (equal agent-room destination-room))
then (if (not (hallway? agent-room))
then (go-thru-door ’exit agent-room))
(if (not (hallway? destination-room))
then (go-thru-door ’enter destination-room))))

(defprocedure go-thru-door (direction room)
:body
(door-loc <- (choose-value (door-locations room)
heuristic (closest-loc(get-agent-loc *statex))))
(doorstep-loc <- (get-doorstep-location door-loc direction))
(go-to-cell doorstep-loc)
(move-dir <- (adjacent-direction doorstep-loc door-loc))
(if (grasping-object? *statex*)
then (carry move-dir)
(carry move-dir)
else (move move-dir)
(move move-dir)))

(defprocedure go-next-to-cell (cell)
:body
(pickup-loc <-
(choose-value (adjacent-cells cell)
:heuristic (closest-loc (get-agent-loc *statex))))
(go-to-cell pickup-loc))

(defprocedure go-to-cell (goal-loc)
:body

R. Levinson/Artificial Intelligence 76 (1995) 319-375 369

(until (and (agent-loc <- (get-agent-loc *statex))
(equal agent-loc goal-loc))
do (move-dir <- (choose-value ’(n s e W)
:heuristic
(closest-dir (get-agent-loc *statex)
goal-loc)))
(choose-procedure (take a step in move-dir goal-loc)
:heuristic (prefer-first-choice))))

;Rkkxkkkkkk Effector command level procedures sdokskokskdkkokskdokkkdk

(defprocedure move (?dir)
:goal (take a step in 7dir 7goal-loc)
:preconditions (not (grasping-object? *statex))
(agent-loc <- (get-agent-loc *statex*))
(target-loc <- (adjacent-cell agent-loc ?dir))
(cell-empty? target-loc *statex)
(in-bounds? target-loc)
:body (move-agent 7dir)
(wait *reactor-sleep-timex)
(¥statex <- (read-sensors))
:simulation
(*statex <- (remove-fact ’(at agent-loc) *statex))
(*statex <- (add-fact ’(at target-loc) *statex*))

(defprocedure carry (?7dir)
:goal (take a step in 7dir ?goal-loc)
:preconditions (grasp-dir <- (get-grasp-dir *statex*))
(agent-loc <- (get-agent-loc *statex))
(target-loc <- (adjacent-cell agent-loc ?7dir))
(cell-empty? target-loc *statex)
(tile-loc <~ (adjacent-cell agent-loc grasp-dir))
(new-tile-loc <~ (adjacent-cell tile-loc ?7dir))
(cell-empty? new-tile-loc *statex)
(in-bounds? new-tile-loc)
(in-bounds? target-loc)
:body (move-agent 7dir)
(wait *reactor-sleep-timex)
(*state* <- (read-sensors))
:simulation
(tile <~ (cell-contents tile-loc *statex))
(¥state* <- (remove-fact ’(at agent-loc) *statex))
(*#statex <- (remove-fact ’(in-cell tile tile-loc) *statex))
(*state*x <- (add-fact ’(at target-loc) *statex))
(*¥state* <-

370 R. Levinson/Artificial Intelligence 76 (1995) 319-375

(add~fact ’(in-cell tile new-tile-loc) *statex*)))

(defprocedure grasp-tile (direction)
:preconditions (agent-loc <- (get-agent-loc *statex))
(tile-loc <- (adjacent-cell agent-loc direction))
:body (grasp direction)
(wait *reactor-sleep-timex)
(*statex <- (read-sensors))
:simulation

(*statex <- (add-fact ’(grasp-dir direction) *statex)))
55 *dokkkokksokkk Global heuristic and termination functions skkskokkkkkk

(defun plan~ best-nodes (search-record)
(16’" AN .5u)
(loop for node in (open-nodes search-record)
when (or (null best)
(< (get-global node ’*rank*) (first best)))
do (setq best (coms (get-global node ’xrank*) node)))
(1ist (cdr best))))

(defun controller-best-nodes (search-record)
(let (best)
(loop for node in (open-nodes search-record)
when (or (null best)
(< (get-global node ’*rank*) (first best)))
do (setq best (cons (get-global node ’*rank*) node)))
(1list (cdr best))))

(defun planner-terminate? (search-record)
(or (deadline-expired? search-record)
(null (search-record-open search-record))
(search-record-success search-record)))

(defun controller-terminate? (search-record)
(or (search-record-success search-record)
(search-record-failure search-record)
(null (search-record-open search-record))
(deadline-expired? search-record)))

;55 **** The following version of planner-best-nodes
;55 *k*%k was used for experiment 1 to prevent the planmer from

i35 *¥xx*% selecting wall-following reactive procedures

(defun planner-best-necdes (search-record)

R. Levinson/Arfificial Intelligence 76 (1995) 319-375 371

(let (best)

(loop for node in (open-nodes search-record)

when (and (not (following-wall? node))

(or (null best)
(< (get-global node ’*rank¥*)
(first best))))

do (setq best (cons (get-global node °’*rank*) node)))

(list (cdr best))))

33y oRkkxkkskkckkkk [Local heuristic fUnctions ¥k kkokkkk sk okkk kK kkkk

(defun closest-loc (current-loc choice-nodes
&optional planner-choice)
(let ((closest (list 9999))
(choices (get-choice-values choice-nodes))
distance)
(loop for choice in choices
do (setq distance
(manhattan-distance current-loc (car choice)))
(when (< distance (car closest))
(setq closest (cons distance (cdr choice)))))
(loop for choice in choices
do (set-global (cdr choice) ’*rank*
(cond((equal (car choice) planner-choice) 0)
((eq (cdr closest)(cdr choice)) 1)
t 2N

(defun closest-dir (agent-loc goal-loc choice-nodes
&optional planner-choice)
(let* ((agent-x (first agent-loc))
(agent-y (second agent-loc))
(goal-x (first goal-loc))
(goal-y (second goal-loc)))
(loop for choice-node in choice-nodes
do (setq choice-value (get-choice-value choice-node))
(set~global choice-node ’*rankx
(if (equal choice-value planner-choice) 0
(case choice-value
(w (if (> agent-x goal-x) 1 2))
(e (if (< agent-x goal-x) 1 2))
(s (if (> agent-y goal-y) 1 2))
(n (if (< agent-y goal-y) 1 2))))))))

(defun prefer-first-choice (choice-nodes &optional planner-choice)
(loop for choice in (get-choice-values choice-nodes)

372 R. Levinson/Artificial Intelligence 76 (1995) 319-375

for rank from 1
do (set-global (cdr choice) ’*rank*
(if (equal (car choice) planner-choice)
0
rank))))

;3 s ¥kxkkkkkkk Reactive wall-following procedures s kkskkkkkokokskokkkkk

(defprocedure move-around-obstacle (?dir 7goal-loc)

:goal (take a step in 7dir 7goal-loc)

:preconditions (not (grasping-object? *statex))
(agent-loc <- (get-agent-loc *statex))
(target-loc <- (adjacent-cell agent-loc ?7dir))
(not (cell-empty? target-loc *statex))
(in-bounds? target-loc)

:body

(detour-dir <- (choose-value (wall-directions ?7dir)

:heuristic (closest-dir agent-loc ?goal-loc)))
(follow-wall detour-dir agent-loc 7dir)
(move ?dir))

(defprocedure follow-wall (detour-dir agent-loc dir)
:body
(detour <- (list agent-loc))
(until (and (detour-target-loc <- (adjacent-cell agent-loc
detour-dir))
(target-loc <- (adjacent-cell agent-loc dir))
(cell-empty? target-loc *statex)
(cell-empty? detour-target-loc *statex)
(not (member target-loc detour :test ’equal)))
do (if (and (detour-loc <- (adjacent-cell agent-loc
detour-dir))
(cell-empty? detour-loc *state*)
(not (member detour-loc detour :test ’equal)))
then (choose-procedure
(take a step in detour-dir bogus-goal)
‘heuristic (prefer-first-choice))
elseif (and (backup-dir <- (opposite-dir dir))
(detour-loc <-
(adjacent-cell agent-loc backup-dir))
(cell-empty? detour-loc *statex)
(not (member detour-loc detour
;test ’equal)))
then (backup-dir <- (opposite-dir dir))
(choose-procedure

R. Levinson/Artificial Intelligence 76 (1995) 319-375 373

(take a step in backup-dir bogus-goal)
‘heuristic (prefer-first-choice))
else (backup-detour-dir <- (opposite-dir detour-dir))
(choose-procedure
(take a step in backup-detour-dir bogus-goal)
theuristic (prefer-first-choice)))
(agent-loc <- (get-agent-loc *statex))
(detour <- (cons agent-loc detour))))

(defprocedure carry-around-obstacle (?dir ?goal-loc)
:goal (take a step in ?dir 7goal-loc)
:preconditions (grasp-dir <- (get-grasp-dir *statex*))
(agent-loc <- (get-agent-loc *statex*))
(target-loc <- (adjacent-cell agent-loc ?dir))
(tile~loc <- (adjacent-cell agent-loc grasp-dir))
(target-tile-loc <- (adjacent-cell tile-loc 7dir))
(or (not (cell-empty? target-tile-loc *state*))
(not (cell-empty? target-loc *statex)))
(in-bounds? target-loc)
:body
(detour-dir <- (choose-value (possible-dirs 7dir)
heuristic (closest-dir agent-loc ?goal-loc)))
(follow-wall-with-object
detour-dir agent-loc ?dir grasp-dir tile-loc)
(carry ?7dir))

(defprocedure follow-wall-with-object (detour-dir agent-loc dir
grasp-dir tile-loc)

:body

(detour <- (list tile-loc))

(until (and (target-loc <- (adjacent-cell agent-loc dir))
(tile-target-loc <~ (adjacent-cell tile-loc dir))
(cell-empty? tile-target-loc *statex)
(cell-empty? target-loc *statex)

(not (member tile-target-loc detour :test ’equal)))
do (if (and (tile-detour-loc <-

(adjacent-cell tile-loc detour-dir))
(detour-loc <-

(adjacent-cell agent-loc detour-dir))
(cell-empty? detour-loc *statex)
(cell-empty? tile-detour-loc *statex)
(not (member tile-detour-loc detour

:test ’equal)))
then (choose-procedure
(take a step in detour~dir bogus-goal)

374 R. Levinson/Artificiul Intelligence 76 (1995) 319-375

theuristic (prefer-first-choice))
elseif (and (backup-dir <- (opposite-dir dir))
(tile-detour-loc <-
(adjacent-cell tile-loc backup-dir))
(detour-loc <-
(adjacent-cell agent-loc backup-dir))
(cell-empty? detour-loc *statex)
(cell-empty? tile-detour-loc *statex)
(not (member tile-detour-loc detour
;test ’equal)))
then (backup-dir <- (opposite-dir dir))
(choose~procedure
(take a step in backup-dir bogus-goal)
‘heuristic (prefer-first-choice))
else (backup-detour-dir <- (opposite-dir detour-dir))
(choose-procedure
(take a step in backup-detour-dir bogus-goal)
:heuristic (prefer-first-choice)))
(agent-loc <- (get-agent-loc *statex))
(tile-loc <- (adjacent-cell agent-loc grasp-dir))
(detour <- (cons tile-loc detour))))

References

[T} M. Beetz and D. McDermott, Declarative goals in reactive plans, in: Proceedings First International
Conference on Al Planning Systems (1992) 3-12.

[2] M. Boddy and T.L. Dean, Deliberation scheduling for problem solving in time-constrained environments,
Ariif. Intell. 67 (2) (1994) 245-285.

|3} J. Bresina. Design of a reactive systern based on classical planning, in: Working Notes 1993 AAAI Spring
Symposium Series (Session on Foundations of Automatic Planning), Stanford, CA (1993) 5-9.

[4] J. Bresina and M. Drummond, Integrating planning and reaction: a preliminary report, in: Proceedings
1990 AAAL Spring Symposium Series (Session on Planning in Uncertain, Unpredictable, or Changing
Environments), Stanford, CA (1990).

|51 R. Brooks. A robust layered control system for a mobile robot, IEEE J. Rob. Automation 2 (1986)
14-23

[6] J. A. Campbell. ed.. Implemenitations of Prolog (Ellis Horwood, Chichester, England, 1984).

171 D. Chapman. Planning for conjunctive goals. Arrif. Intell. 32 (1987) 333-377.

18] K. Curric and A. Tate, O-Plan: the open planning architecture, Arsif. fntell. 52 (1) (1991) 49-86.

[9] T.L. Dean and M. Boddy, An analysis of time-dependent planning, in: Proceedings AAAI-88, St. Paul,
MN (1988) 49-54.

[10] T.L. Dean and M. Wellman, Planning and Control (Morgan Kaufman, San Mateo, CA, 1991).

[11] M. Drummond. Situated control rules. in: Proceedings First International Conference on Principles of
Knowledge Representation and Reasoning, Toronto, Ont. (1989) 103-113.

[12] M. Drummond and J. Bresina. Anytime synthetic projection: maximizing the probability of goal
satisfaction, Proceedings AAAI-90, Boston, MA (1990) [38-144.

[13] M. Drummond. J. Bresina, K. Swanson and R. Levinson, Reaction-first search: incremental planning with
guaranteed performance improvement, in: Proceedings {JCAI-93. Chambery, France (1993) 1408-1414.

| 14| R.E. Fikex and N.J. Nilsson, STRIPS: a new approach to the application of theorem proving to problem
solving. Arnif. Intell. 2 (1971) 189-208.

R. Levinson/Artificial Intelligence 76 (1995) 319-375 375

[15] R.J. Firby, An investigation into reactive planning in complex domains, in: Proceedings AAAI-87. Seattle,
WA (1987) 202-206.

[16] P. Friedland, Knowledge-based experiment design in molecular genetics, Ph.D. Thesis, Stanford
University. Stanford, CA (1979).

[17] M.P. Georgeft and A.L. Lansky. Reactive reasoning and planning, in: Proceedings AAAI-87, Seattle, WA
(1987) 677-682.

[18] K. Hammond, Explaining and repairing plans that fail. Artif. Intell. 45 (1990) 173-228.

191 S. Hanks and R.J. Firby. Issues and architectures for planning and execution, in: Proceedings Workshop
on Innovative Approaches to Planning, Scheduling and Control, San Diego, CA (1990) 59-70.

[20| E. Horowitz and S. Sahni, Fundamenials of Computer Algorithms (Computer Science Press, Rockville,
MD. 1984).

|21] L.P. Kaelbling. Goals as parallel program specifications, in: Proceedings AAAI-88, St. Paul, MN (1988)
60-65.

{22] S. Kambhampati and J. Hendler, A validation-structure-based theory of plan modification and reuse,
Arrif. Intell. 55 (1992) 193-258.

[23] R.E. Korf, Planning as scarch: a quantitative approach, Arrif. Intell. 33 (1987) 566-577.

| 24| R.E. Korf, Real-time heuristic search, Artif. Intell. 42 (1990) 189-211.

[25] JE. Laird and PS. Rosenbloom, Integrating cxecution. planning and learning in Soar for external
environments, in: Proceedings AAAI-90, Boston, MA (1990) 1022-1029.

[26] R. Levinson. Human frontal lobes and Al planning systems, in: Proceedings Second International
Conference on Al Planning Systems (AIPS-94). Chicago. IL (1994) 305-310.

[27] R. Levinson, A computer model of human frontal lobe function (a preliminary report), NASA Ames
Research Center. Al Research Branch Technical Report FIA-94-15 (1994).

| 28] R. Levinson, P. Robinson and 1J. Thompson, Integrated perception, planning and control for autonomous
soil analysis, in: Proceedings 9th IEEE Conference on Al for Applications, Orlando, FL (1993) 249-255.

1291 D. Lyons, and A. Hendriks, A practical approach to integrating reaction and deliberation, in: Proceedings
First International Conference on Al Planning Systems (1992) 153-162.

[30] D. McAllester and D. Rosenblitt. Systematic nonlincar planning, in: Proceedings AAAI-9/, Anahei, CA
(1991) 634-639.

| 31] D. McDermott, Planning reactive behavior: a progress report, in: Proceedings Workshop on Innovative
Approuaches to Planning, Scheduling and Control. San Diego. CA (1990) 450-458.

[32] D. McDermott, Transformational planning of reactive behavior, Technical Report YALEU/CSD/RR#941,
Yale University. Department of Computer Science. New Haven, CT (1992).

[33] N.J. Nilsson. Principles of Artificial Intelligence (Tioga. Palo Alto, CA, 1980).

{34] A. Philips and J. Bresina, NASA Tileworld Manual, NASA Technical Report TR-FIA-91-11, Code FIA,
NASA Ames Research Center, Moffett Field, CA (1992).

|35] S. Russell and S. Zilberstein, Composing real-time systems, in: Proceedings IJCAI-91. Sydney, Australia
(1991) 212-217

[36] A. Saffiotti. K. Konolige and E. Ruspini, A multivalued logic approach to integrating planning and
control, Arfif. Intell. 76 (1995) Special [ssue on Planning and Scheduling (this issue).

[37] J. Siskind and D. McAllester. Nondeterministic Lisp as a substrate for constraint logic programming,
in:Proceedings AAAI-93, Washington, DC (1993) [33-138.

1381 D. Wilkins, Practical Planning: Extending the Classical Al Paradigm (Morgan Kaufman, San Mateo,
CA. 1988).

[39] R. Zabih, D. McAllester and D. Chapinan. Nondeterministic Lisp with dependency-directed backtracking,
in: Proceedings AAAI-87. Seattle, WA (1987) 59 -64

